Traffic Impact Analysis

Austin Oaks

Austin, Texas

Prepared for: Spire Realty Group, LP

Prepared by:

Kimley-Horn

801 Cherry Street, Suite 950 Fort Worth, TX 76102 (817) 339-2254

KH Project No. 061277705

July 26, 2016

Austin Oaks TIA

JULY 26, 2016

UPDATED FROM APRIL 21, 2016

Prepared By:

Kimley» Horn

Contact: Jeff Whitacre, P.E., AICP, PTP

Phone: 817-335-6511

Contents

EXECUT	IVE SUMMARY	vi
INTRODU	JCTION	1
A.	Purpose	1
В.	Existing and Proposed Land Uses	1
C.	Analysis Methodology	1
EXISTING	G CONDITIONS	5
A.	Site Location / Study Area	5
B.	Existing Roadway Characteristics	5
C.	Existing Traffic Volumes	6
D.	Background Traffic Growth	7
2016 ANA	ALYSIS	11
A.	LOS Analysis Methodology	11
B.	2016 Existing Analysis Results	12
C.	Traffic Signal Warrant Analysis	13
C.	Existing and Future Regional Impacts	13
FUTURE	CONDITIONS	17
A.	Existing and Proposed Development Assumptions (By Phase)	17
B.	Existing and ProposeD Trip Generation Methodology	17
C.	Trip Distribution And Assignment	18
D.	No Build Scenarios (All Future Analysis Years)	20
2018 ANA	ALYSIS	22
A.	Traffic Volume Conditions	22
B.	2018 Build Analysis Results	29
C.	2018 Improvements	30
D.	2018 Mitigated Analysis Results	32
2020 ANA	ALYSIS	36
A.	Traffic Volume Conditions	36
B.	2020 Build Analysis Results	43

C.	2020 Improvements	43
D.	2020 Mitigated Analysis Results	43
2022 ANALY	'SIS	47
A.	Traffic Volume Conditions	47
B.	2022 Build Analysis Results	54
C.	2022 Improvements	54
D.	2022 Mitigated Analysis Results	55
2024 ANALY	'SIS	59
A.	Traffic Volume Conditions	59
B.	2024 Build Analysis Results	66
C.	Traffic Signal Warrant Analysis	66
D.	2024 Improvements	67
E.	2024 Mitigated Analysis Results	67
OTHER TRA	AFFIC/PLANNING CONSIDERATIONS	72
RECOMMEN	NDED IMPROVEMENTS COST SHARING	73
INLOCIVIIVILI	NDED IIVII NOVEIVIENTO COOT STANINO	
	ON AND RECOMMENDATION	
CONCLUSIO		76
CONCLUSIO	ON AND RECOMMENDATION	76
CONCLUSIO	ON AND RECOMMENDATION	76
CONCLUSION CERTIFICATE Exhibits	ON AND RECOMMENDATION	76 79
CONCLUSION CERTIFICATE Exhibits Exhibit 1: Vio	ON AND RECOMMENDATION	76 79
CONCLUSION CERTIFICAT Exhibits Exhibit 1: Violential Conclusion Exhibit 2: Conclusion Exhibit 3: Conclusion Exhibit 4: Conclusion Exhibit 4: Conclusion Exhibit 5: Conclusion E	ON AND RECOMMENDATION	
CONCLUSION CERTIFICAT Exhibits Exhibit 1: Viole Exhibit 2: Concerning the conce	ON AND RECOMMENDATION	
CONCLUSION CERTIFICAT Exhibits Exhibit 1: Viole Exhibit 2: Concentration Exhibit 3: 20 Exhibit 4: 20	ON AND RECOMMENDATION	2
CONCLUSION CERTIFICATE Exhibits Exhibit 1: Violent Exhibit 2: Concentration in the concentra	CON AND RECOMMENDATION FION STATEMENT Sinity Map Inceptual Site Plan 16 Existing Lane Assignments and Traffic Control 16 Existing Volumes	
CONCLUSION CERTIFICATE Exhibits Exhibit 1: Violent Exhibit 2: Concentration of the concentra	CION STATEMENT Sinity Map Inceptual Site Plan 16 Existing Lane Assignments and Traffic Control 16 Existing Volumes Cobal Trip Distribution Percentages	
CONCLUSION CERTIFICATE Exhibits Exhibit 1: Violent Exhibit 2: Concentration of the Exhibit 3: 20 Exhibit 4: 20 Exhibit 5: Global Exhibit 6: 20 Exhibit 7: 20	ON AND RECOMMENDATION FION STATEMENT cinity Map noceptual Site Plan 16 Existing Lane Assignments and Traffic Control 16 Existing Volumes cobal Trip Distribution Percentages 18 No Build Traffic Volumes	

Exhibit 10: 2018 Build Traffic Volumes (Driveways)	27
Exhibit 11: 2018 Build Lane Assignments and Traffic Control	28
Exhibit 12: 2018 Improvements	33
Exhibit 13: 2020 No Build Traffic Volumes	37
Exhibit 14: 2020 Trip Assignment Volumes (Net New Trips)	38
Exhibit 15: 2020 Local Trip Distribution Percentages	39
Exhibit 16: 2020 Build Traffic Volumes (Intersections)	40
Exhibit 17: 2020 Build Traffic Volumes (Driveways)	41
Exhibit 18: 2020 Build Lane Assignments and Traffic Control	42
Exhibit 19: 2020 Improvements	44
Exhibit 20: 2022 No Build Traffic Volumes	48
Exhibit 21: 2022 Trip Assignment Volumes (Net New Trips)	49
Exhibit 22: 2022 Local Trip Distribution Percentages	
Exhibit 23: 2022 Build Traffic Volumes (Intersections)	
Exhibit 24: 2022 Build Traffic Volumes (Driveways)	52
Exhibit 25: 2022 Build Lane Assignments and Traffic Control	53
Exhibit 26: 2022 Improvements	56
Exhibit 27: 2024 No Build Traffic Volumes	60
Exhibit 28: 2024 Trip Assignment Volumes (Net New Trips)	61
Exhibit 29: 2024 Local Trip Distribution Percentages	62
Exhibit 30: 2024 Build Traffic Volumes (Intersections)	63
Exhibit 31: 2024 Build Traffic Volumes (Driveways)	64
Exhibit 32: 2024 Build Lane Assignments and Traffic Control	65
Exhibit 33: 2024 Improvements	68
Exhibit 34: 2024 Mitigated Lane Assignment and Traffic Control	69

Tables

Table 1 – Existing and Proposed Land Use	1
Table 2 – Scenario Assumptions	4
Table 3 – Existing Roadway Characteristics	6
Table 4 – Existing and Projected Count Comparison	6
Table 5 – Calculations for Background Growth Rate	8
Table 6 – Level of Service	11
Table 7 – 2016 AM Peak Hour Analysis Results	15
Table 8 – 2016 PM Peak Hour Analysis Results	16
Table 9 – Change in Land Use (By Phase)	17
Table 10 – ITE Trip Generation Rate	18
Table 11 – Global Directional Distribution Percentages	19
Table 12 – Land Use Trip Generation and Construction	19
Table 13 – Local Trip Distribution Information	20
Table 14 – 2018 Build Trip Generation	22
Table 15 – 2018 Intersection AM Peak Hour Analysis Results	34
Table 16 – 2018 Intersection PM Peak Hour Analysis Results	35
Table 17 – 2020 Build Trip Generation	36
Table 18 – 2020 Intersection AM Peak Hour Analysis Results	45
Table 19 – 2020 Intersection PM Peak Hour Analysis Results	46
Table 20 – 2022 Build Trip Generation	47
Table 21 – 2022 Intersection AM Peak Hour Analysis Results	57
Table 22 – 2022 Intersection PM Peak Hour Analysis Results	58
Table 23 – 2024 Build Trip Generation	59
Table 24 – 2024 Intersection AM Peak Hour Analysis Results	70
Table 25 – 2024 Intersection PM Peak Hour Analysis Results	71
Table 26 – Opinion of Probable Cost Summary – Phase I Improvements	74

Table 27 – Opinion of Probable Cost Summary – Phase II, III, & IV Improvements......75

Appendices Appendix A: Tia Scoping Document......B Appendix D: Transit Map..... E Appendix E: Traffic Counts......F Appendix F: Traffic Signal Timings.......G Appendix H: 2018 Conceptual Improvements Along Mopac Southbound Frontage Road I Appendix K: Conceptual Improvements - 2022L Appendix L: Conceptual Improvements - 2024......M Appendix M: Synchro Reports – 2016......N Appendix N: Synchro Reports – 2018O Appendix O: Synchro Reports – 2020P Appendix P: Synchro Reports – 2022Q Appendix R: Preliminary Engineer's Estimate of Probable Construction Costs......S Appendix S: TSWA - Spicewood Springs Road at Hart Lane T Appendix T: TSWA - Executive Center Drive at Wood Hollow DriveU Appendix U: TIA Comment Response......V

A. INTRODUCTION

Kimley-Horn and Associates, Inc. was retained by Spire Realty Group, LP to perform a Traffic Impact Analysis (TIA) for the proposed Austin Oaks Development. This study is intended to determine and address potential traffic impacts of the proposed development on the surrounding roadway network and intersections. This traffic impact study was prepared based on criteria set forth by the City of Austin through a scoping meeting methodology, see *Appendix A*.

The proposed development is located on the southwest corner of Mopac (Loop 1) and Spicewood Springs Road within the City of Austin limits. The land uses for the existing and proposed development are shown in *Table I*.

Comprehensive **Land Uses ITE Code** Size **Existing** General Office Building 445,322 SF 710 **Proposed** 250 DU Apartment 220 Hotel 100 Rooms 310 General Office Building 672,995 SF 710 Medical-Dental Office 169,000 SF 720 Building Retail/High-Turnover 46,700 SF 932 (Sit-Down) Restaurant

Table I- Existing and Proposed Land Use

B. ANALYSIS METHODOLOGY

The proposed development is anticipated to be developed in phases. The traffic evaluation is comprised of 2016 existing conditions analyses and separate future condition analyses for years 2018, 2020, 2022, and 2024. Detailed descriptions of the methodology assumptions and conditions used to evaluate each scenario is provided in the body of the report. This summary gives a brief overview of the recommended improvements based on a peak hour level of service (LOS) analysis for each analysis years.

C. EXISTING AND PROPOSED DEVELOPMENT ASSUMPTIONS (BY PHASE)

The Austin Oaks development will be constructed in phases. Similarly, the existing office development will be removed in phases concurrently with the construction of the proposed development. *Table II* displays the addition (or removal) of land use for each anticipated phase of development.

Table II- Change in Land Use (By Anticipated Phase)

Deve	lopment	Existing Office		Proposed Austin Oaks Land Use					
Phase	Year	Removed	Remaining	General Office	Medical Office	Restaurant	Apartment	Hotel	
Existing	2016	-	445,322 SF	-	•	-	-	-	
Phase I	2018	87,837 SF	357,485 SF	215,000 SF	55,000 SF	0 SF	0	0	
Phase II	2020	105,893 SF	339,429 SF	0 SF	0 SF	15,000 SF	250 DU	0	
Phase III	2022	149,822 SF	295,500 SF	207,000 SF	55,000 SF	31,700 SF	0	100 Rooms	
Phase IV	2024	101,770 SF	343,552 SF	250,995 SF	59,000 SF	0 SF	0	0	
Total		445,322 SF	-	672,995 SF	169,000 SF	46,700 SF	250 DU	100 Rooms	

Twelve (12) driveways are proposed as part of the Austin Oaks development; ten intersecting Executive Center Drive and two intersecting Wood Hollow Drive. All driveways are full-access, stop-controlled, and will be constructed in phases.

D. RECOMMENDED IMPROVEMENTS

The Austin Oaks Traffic Impact Study identifies twenty-three (23) improvements. The improvements' costs have been broken up by pro-rated shares. For the identified improvements, the developer's pro rata share based on improvements identified is anticipated to be approximately \$628,000. These funds will be allocated to construct a traffic signal at Spicewood Springs Road and Hart Lane, as well as other improvements to be determined through a discussion with City of Austin staff.

CAPACITY ANALYSIS

A. EXISTING AND FUTURE REGIONAL IMPACTS

Loop 1 provides connectivity to regions north of Austin and is used by commuters traveling into Austin from the surrounding regions. Traffic volumes along Loop 1 within the study area are expected to increase as a result of traffic generated by developments beyond the Austin City Limits. Development sprawl occurring north of Austin provides a majority of the increase of traffic on Loop 1. Therefore, the impacts of regional background growth on traffic operations at intersections along Loop 1 exceed the impacts of local development. Issues along Loop 1 should be addressed at a regional level. The managed lanes currently being constructed on Loop 1 is a starting point for these regional improvements.

Potential improvements at intersections along Loop 1 are identified and recommended as part of this study. These improvements will reduce delay but capacity issues along Loop 1 remain. Although regional improvements are required to achieve an acceptable LOS at the intersections along Loop 1, such improvements within TxDOT right-of-way require TxDOT approval. Coordination between the City of Austin and TxDOT is recommended to aid in determining these regional improvements.

B. FUTURE ANALYSIS RESULTS AND RECOMMENDATIONS

The analysis of future conditions was performed for No Build, Build, and Mitigated scenarios for analysis years 2018, 2020, 2022, and 2024. The development, roadway, and traffic volume assumptions used for the analyses are unique to each scenario and described at length in the report. The 2024 Build Out assumes the completion of Phases I, II, III, and IV of the Austin Oaks

development. *Table III* summarizes the Daily, and Weekday AM and PM peak hour trip generation the 2024 Build Out based on ITE methodology.

Table III- 2024 Build-Out Trip Generation

Land Use	Amount	Units	ITE Code	Daily Trips	AM Peak Hour Trips			PM Peak Hour Trips		
Land OSE	Aillouit				ln	Out	Total	ln	Out	Total
Existing General Office Building	445.322	1,000 Sq Ft	710	4,086	556	76	632	98	479	577
Existing General Office Building (To Remain)	0	1,000 Sq Ft	710	0	0	0	0	0	0	0
Reduction in Existing Office Trips				4,086	556	76	632	98	479	577
Apartment	250	Dwelling Unit(s)	220	1,640	25	101	126	101	54	155
Hotel	100	Room(s)	310	818	31	22	53	31	29	60
General Office Building	672.995	1,000 Sq Ft	710	5,591	774	106	880	141	691	832
Medical-Dental Office Building	169.000	1,000 Sq Ft	720	6,695	319	85	404	131	336	467
Retail/High-Turnover (Sit-Down) Restaurant	46.700	1,000 Sq Ft	932	5,938	278	227	505	276	184	460
2024 Net New Trips					871	465	1,336	582	815	1,397
Internal Capture Trip Reduction (5%):					71	27	98	34	65	99
2024 Trips (at Site Driveways)					1,356	514	1,870	646	1,229	1,875
	2	2024 Net New Exte	ernal Trips	15,562	800	438	1,238	548	750	1,298

Improvements were recommended in each analysis year to mitigate observable impacts and incorporated in the analysis of subsequent years. The analyses indicate twenty-three (23) improvements are recommended concurrently with the construction of the proposed development to provide adequate traffic operations in the study area.

2018 Improvements (14):

- Spicewood Springs Road & Hart Lane (1). Consider installing a fully actuated traffic signal at the intersection of Spicewood Springs Road and Hart Lane. Install an advance warning flasher west of the intersection synchronized with the traffic signal to address the potential safety issue related to the horizontal curvature of Spicewood Springs Road. Widen the northbound approach of Hart Lane to include dual left-turns.
- Hart Lane between Executive Center Drive and Spicewood Springs Road (2). Widen Hart Lane between Executive Center Drive and Spicewood Springs Road to accommodate a three-lane northbound approach at the intersection of Hart Lane at Spicewood Springs Road. Restripe the northbound approach of Hart Lane to include dual-left-turn lanes and an exclusive right-turn lane (three 10' approach lanes); a single northbound receiving lane (14') and southbound bike lane (5') will remain.
- <u>Spicewood Springs Road & Wood Hollow Drive (3)</u>. Extend the westbound left-turn bay of Spicewood Springs Road to Wood Hollow Drive to provide adequate storage for vehicles making a left-turn movement and prevent spill-back into the adjacent lane. 15% of the inbound trips generated by the Austin Oaks development were assigned to the westbound left-turn movement of Spicewood Springs Road to Wood Hollow Drive. The proposed left-turn bay extension will mitigate the impact of site traffic at this movement.
- Spicewood Springs Road & Wood Hollow Drive (4). Provide a right-turn overlap operation at the northbound right-turn movement of Wood Hollow Drive to Spicewood Springs Road. This will allow the northbound right-turn phase and the westbound left-turn phase to operate simultaneously and decrease delay at the northbound approach of Wood Hollow Drive. 15% of the outbound trips generated by the Austin Oaks development were assigned to the right-turn movement of Wood Hollow Drive to Spicewood Springs Road. The proposed right-turn overlap operation will mitigate the impact of site traffic at this movement.

- Wood Hollow Drive between Executive Center Drive and Spicewood Springs Road (5).
 Concurrently with the right-turn overlap improvement at the northbound right-turn movement of Wood Hollow Drive to Spicewood Springs Road, restripe Wood Hollow Drive between Executive Center Drive and Spicewood Springs Road to allow two northbound lanes, one southbound lane, and bike lanes on both sides of the roadway. Restricting parking and extending the northbound right-turn lane will maximize the operations at the northbound approach of Wood Hollow Drive at Spicewood Springs Road.
- <u>Spicewood Springs Road & Loop 1 SBFR</u> (6). Provide a FREE, channelized operation at the southbound right-turn movement from Loop 1 SBFR to Spicewood Springs Road (westbound). On Spicewood Springs the existing pavement can accommodate a FREE operation, however, there are design constraints due to the existing bike lane. To the extent possible, an 8' sidewalk will be provided along Mopac Southbound Frontage Road. Any improvements at Mopac Frontage Road are subject to TxDOT approval.
- <u>Spicewood Springs Road & Loop 1 SBFR</u> (7). Provide striping and vertical panels (or other physical barrier) at the southbound receiving lanes of Loop 1 SBFR to facilitate a FREE eastbound right-turn movement from Spicewood Springs Road to Loop 1 SBFR. This movement is currently channelized and a merge with Loop 1 SBFR can be accomplished with existing pavement. 12' receiving lanes should be maintained along Mopac Southbound Frontage Road. To the extent possible, an 8' sidewalk will be provided along Mopac Southbound Frontage Road. Any improvements at Mopac Frontage Road are subject to TxDOT approval.
- Executive Center Drive & Wood Hollow Drive (8). Implement stop-control at the northbound and southbound approaches of Wood Hollow Drive. Restripe the northbound approach of Wood Hollow Drive at Executive Center Drive to include a shared thru-left and a shared thru-right. The shared thru-right lanes will also be marked as shared bike lanes. This will require the north-leg of the intersection to be restriped to provide two receiving lanes. Restripe the southbound approach of Wood Hollow Drive at Executive Center Drive to include an exclusive right-turn lane and a shared thru-left. The proposed cross-sections can be accomplished using existing pavement.
- <u>Executive Center Drive & Loop 1 SBFR (9)</u>. Construct a southbound right-turn deceleration lane on Loop 1 SBFR (upstream of Executive Center Drive). Additionally, install vertical panels (or other physical barrier) along Loop 1 Southbound Off-Ramp to prevent access to Executive Center Drive from southbound Loop 1 Southbound Off-Ramp and reduce weaving in this section of the frontage road. To the extent possible, an 8' sidewalk will be provided along Mopac Southbound Frontage Road. Any improvements at Mopac Frontage Road are subject to TxDOT approval.
- <u>Executive Center Drive at Loop 1 SBFR (10)</u>. Construct a southbound acceleration lane on Loop 1 SBFR, downstream of Executive Center Drive to provide a FREE operation at the eastbound right-turn movement of Executive Center Drive. To the extent possible, an 8' sidewalk will be provided along Mopac Southbound Frontage Road. Any improvements at Mopac Frontage Road are subject to TxDOT approval.
- <u>Greystone Drive & Loop 1 SBFR (11)</u>. Construct a southbound right-turn deceleration lane on Loop 1 SBFR (upstream of Greystone Drive). 15% of the outbound trips generated by the Austin Oaks development were assigned to the eastbound right-turn movement of Greystone Drive at Loop 1 SBFR. The proposed southbound right-turn deceleration lane will mitigate the impact of site traffic at eastbound approach by removing vehicles turning right from the southbound thru lane. To the extent possible, an 8' sidewalk will be provided along Mopac Southbound Frontage Road. Any improvements at Mopac Frontage Road are subject to TxDOT approval.

- Far West Boulevard & Hart Lane (12). Widen the northbound approach of Hart Lane to a five-lane cross-section at the intersection of Far West Boulevard. The northbound approach should include an exclusive left-turn lane, exclusive thru lane, and exclusive right-turn lane; two southbound receiving lanes with remain. Concurrently with the approach widening, a 5' sidewalk should be reconstructed adjacent to the northbound approach of Hart Lane. Restripe the southbound approach of Hart Lane to include an exclusive left-turn lane, exclusive thru lane, and shared thru-right lane (three 10' approach lanes); a single northbound receiving lane (14') will remain.
- <u>Far West Boulevard & Wood Hollow Drive (13)</u>. Provide a right-turn overlap operation at the
 northbound right-turn movement from Wood Hollow Drive to Far West Boulevard. To maximize
 the benefits of this improvement, restripe the northbound approach to extend the existing rightturn lane.
- <u>Far West Boulevard & Loop 1 SBFR (14)</u>. Provide a FREE, channelized operation at the southbound right-turn movement from Loop 1 SBFR to Far West Boulevard (westbound). The existing lane configurations can accommodate a FREE operation because there are three westbound receiving lanes. The right-turn-only lane along Far West Boulevard is recommended to be restriped as a shared thru-right lane between Loop 1 and the first driveway (approximately 400'). The proposed southbound channelized right-turn movement is intended to accommodate the planned bike lane. However, it remains unclear what further improvements will be necessary to accommodate the bike lane west of the intersection. To the extent possible, an 8' sidewalk will be provided along Mopac Southbound Frontage Road. Any improvements at Mopac Frontage Road are subject to TxDOT approval.

2020 Improvement (1):

<u>Far West Boulevard & Wood Hollow Drive (1)</u> Adjust signal timing at the intersection of Far West Boulevard and Wood Hollow Drive.

2022 1 Improvement (2):

- Executive Center Drive & Wood Hollow Drive (1). Restripe the eastbound approach of Executive Center Drive at Wood Hollow Drive to include a shared thru-left and a shared thru-right. The shared thru-right lanes will also be marked as shared bike lanes. This will require the east-leg of the intersection to be restriped to provide two receiving lanes. Restripe the westbound approach of Executive Center Drive at Wood Hollow Drive to include an exclusive right-turn lane and a shared thru-left. The proposed cross-sections can be accomplished using existing pavement.
- Far West Boulevard & Wood Hollow Drive (2). Restripe the eastbound approach of Far West Boulevard at Wood Hollow Drive. The outside lane of the eastbound approach is currently striped as an exclusive right-turn lane and there are three eastbound receiving lanes. To prevent weaving downstream of Wood Hollow Drive the City should consider restriping the outside lane of Far West Boulevard as a shared thru-right until Loop 1 SBFR.

2024 Improvements (6):

- <u>Executive Center Drive & Hart Lane (1)</u>. Restripe the westbound approach of Executive Center Drive at Hart Lane to include two lanes: exclusive left-turn lane and exclusive right-turn lane. This improvement will allow the left-turn and right-turn movements to operate independently and improve the LOS of this approach.
- Hart Lane between Executive Center Drive and Spicewood Springs Road (2). Restripe Hart
 Lane between Executive Center Drive and Spicewood Springs Road to provide a southbound
 left-turn bay from Hart Lane to Executive Center Drive. The storage provided in this bay will be

minimum as space must be preserved to accommodate the dual-left-turn lanes at the northbound approach from Hart Lane to Spicewood Springs Road.

- Executive Center Drive & Wood Hollow Drive (3). Consider installing a fully actuated traffic signal at the intersection of Executive Center Drive and Wood Hollow Drive. The City should consider operating northbound and southbound approaches as split phased. Although a signal will ultimately be required, the recommended all-way stop could remain and be monitored until the signal is necessary. An intersection analysis is recommended prior to the installation of the signal.
- <u>Greystone Drive & Hart Lane (4)</u>. Restripe the southbound approach of Hart Lane at Greystone
 Drive to include two thru lanes. This will require the south-leg of the intersection to be restriped
 to provide two receiving lanes. A cross-section which will accommodate three travel lanes and
 two bike lanes can be accomplished using existing pavement. We recommend that this
 improvement not be implement until necessary based on actual (not projected) traffic demands
 require it.
- <u>Greystone Drive & Wood Hollow Drive (5)</u>. Restripe the northbound approach of Wood Hollow Drive at Greystone Drive to include two thru lanes. This will require the north-leg of the intersection to be restriped to provide two receiving lanes. A cross-section which will accommodate three travel lanes and two bike lanes can be accomplished using existing pavement. We recommend that this improvement not be implement until necessary based on actual (not projected) traffic demands require it.
- <u>Far West Boulevard & Wood Hollow Drive.</u> (6) Adjust signal timing at the intersection of Far West Boulevard and Wood Hollow Drive.

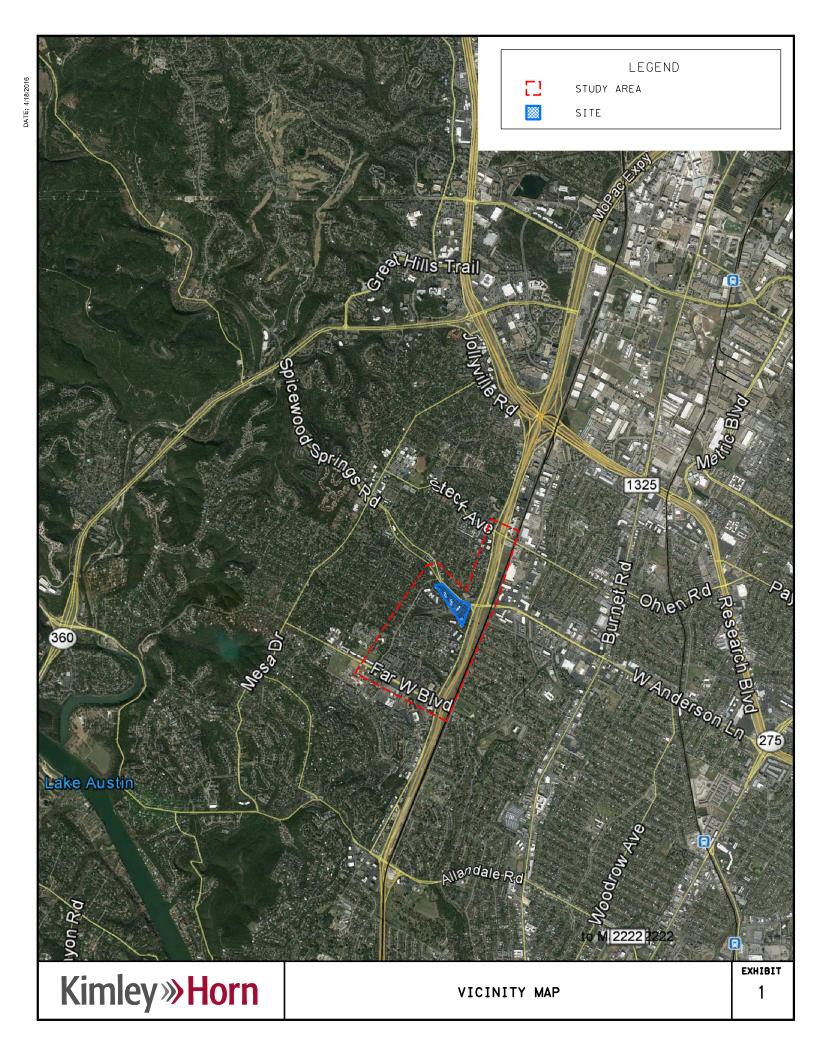
Exhibits showing improvements at a conceptual level are provided in Appendices H, I, J, & K.

A. PURPOSE

Kimley-Horn and Associates, Inc. (Kimley-Horn) was retained by Spire Realty Group, LP to perform a Traffic Impact Analysis (TIA) for the proposed Austin Oaks Development. The proposed development is located on the southwest corner of Mopac (Loop 1) and Spicewood Springs Road within the City of Austin limits. The site is currently occupied by approximately 445,000 square-feet of office that generates traffic. A site vicinity map is provided in *Exhibit 1*.

This study is intended to determine and address potential traffic impacts of the proposed development on the surrounding roadway network and intersections. The specific objectives of this study are to determine existing and future levels of service (LOS) at the various study intersections and recommend any capacity or operational related improvements. This traffic impact study was prepared based on criteria set forth by the City of Austin through a scoping meeting methodology, see *Appendix A*.

B. EXISTING AND PROPOSED LAND USES


The proposed mixed-use development will replace an existing office development. The comprehensive size of the existing and proposed land-uses for Austin Oaks are summarized in *Table 1*. The conceptual site plan for the proposed development is shown in *Exhibit 2*.

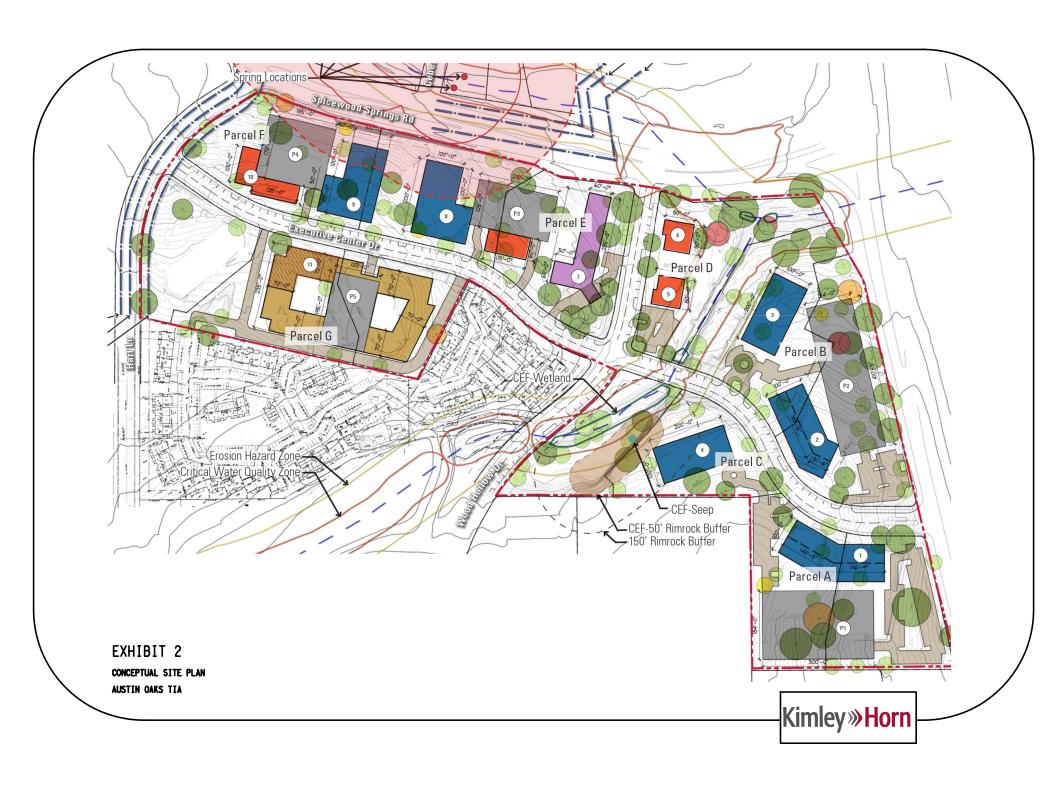

Comprehensive **Land Uses ITE Code** Size **Existing** General Office Building 710 445,322 SF **Proposed** 250 DU 220 Apartment Hotel 100 Rooms 310 General Office Building 672.995 SF 710 Medical-Dental Office 169,000 SF 720 Building Retail/High-Turnover 46,700 SF 932 (Sit-Down) Restaurant

Table 1 – Existing and Proposed Land Use

C. ANALYSIS METHODOLOGY

The proposed development is anticipated to be developed in phases. The traffic evaluation is comprised of 2016 existing conditions analyses and separate future condition analyses for years 2018, 2020, 2022, and 2024. Future condition analyses consisted of three (3) scenarios for each analysis year: No Build, Build, and Mitigated. Weekday AM and PM peak hour LOS analyses were performed for all scenarios using Synchro 8TM software. *Table 2* provides the development, roadway, and traffic volume assumptions for the 2016 existing scenario and a general summary of assumptions used for the analysis of future years.

TABLE 2

SCENARIO ASSUMPTIONS

AUSTIN OAKS TIA

Scenario	Development	Roadway	Traffic Volume
2016 Existing	Existing Austin Oaks Office	Existing	Existing Austin Oaks Office Site Trips
2018 No Build	2016 Existing Conditions	2016 Existing Conditions	2016 Existing Conditions + 2 Years of Background Growth (2% Annually)
2018 Build	Existing Conditions + Net Development (Phase I)	2016 Existing Conditions	2018 No Build Conditions + Net Development Volumes (Phase I)
2018 Mitigated	2018 Build Conditions	Existing Conditions + 2018 Roadway Improvements	2018 Build Conditions
2020 No Build	2016 Existing Conditions	2016 Existing Conditions	2016 Existing Conditions + 4 Years of Background Growth (2% Annually)
2020 Build	Existing Conditions + Net Development (Phases I&II)	2018 Mitigated Conditions	2020 No Build Conditions + Net Development Volumes (Phases I&II)
2020 Mitigated	2020 Build Conditions	2020 Build Conditions + 2020 Roadway Improvements	2020 Build Conditions
2022 No Build	2016 Existing Conditions	2016 Existing Conditions	2016 Existing Conditions + 6 Years of Background Growth (2% Annually)
2022 Build	Existing Conditions + Net Development (Phases I,II&III)	2020 Mitigated Conditions	2022 No Build Conditions + Net Development Volumes (Phases I,II&III)
2022 Mitigated	2022 Build Conditions	2022 Build Conditions + 2022 Roadway Improvements	2022 Build Conditions
2024 No Build	2016 Existing Conditions	2016 Existing Conditions	2016 Existing Conditions + 8 Years of Background Growth (2% Annually)
2024 Build	Existing Conditions + Net Development (Phases I,II,III&IV)	2022 Mitigated Conditions	2024 No Build Conditions + Net Development Volumes (Phases I,II,III&IV)
2024 Mitigated	2024 Build Conditions	2024 Build Conditions + 2024 Roadway Improvements	2024 Build Conditions

A. SITE LOCATION / STUDY AREA

The proposed development is located on the southwest corner of Mopac (Loop 1) and Spicewood Springs Road within the City of Austin limits. The site is currently occupied by approximately 445,000 square-feet of office that generates traffic. The existing office development will be removed in phases concurrently with the construction of the proposed development. Trips associated with the existing office are currently on the roadway network and were accounted for in all analyses to most accurately determine the impact of the proposed development on traffic operations in the study area. The study area was developed based on discussions with the City; study-area intersections are listed below:

Required Study Area

- Spicewood Springs Road & Hart Lane
- Spicewood Springs Road & Wood Hollow Drive
- Spicewood Springs Road & Loop 1 SBFR
- Spicewood Springs Road & Loop 1 NBFR
- Executive Center Drive & Hart Lane
- Executive Center Drive & Wood Hollow Drive
- Executive Center Drive & Loop 1 SBFR
- Greystone Drive & Hart Lane
- Greystone Drive & Wood Hollow Drive
- Grevstone Drive & Loop 1 SBFR
- Far W Boulevard & Hart Lane
- Far W Boulevard & Wood Hollow Drive
- Far W Boulevard & Loop 1 SBFR
- Far W Boulevard & Loop 1 NBFR
- Steck Avenue & Loop 1 SBFR
- Steck Avenue & Loop 1 NBFR
- All site driveways

B. EXISTING ROADWAY CHARACTERISTICS

Exhibit 3 displays the existing lane assignments and traffic control at intersections within the study area. This study has assumed these lane assignments for the analysis of 2016 Existing and all No Build scenarios. Characteristics for roadways in the study area as they exist today are listed in **Table 3** and a general description of major roadways in the study are as follows:

Loop 1 Frontage Roads run northbound and southbound, parallel with Loop 1. The 2025 Austin Metropolitan Area Transportation Plan (AMATP) identifies Loop 1 Frontage Roads as a FWY. Each frontage road is a three-lane, undivided, one-way facility. The NBFR provides access to the site via an off ramp south of Spicewood Springs Road. The SBFR provides access to the site via off ramps located north of Steck Avenue and north of Far West Boulevard. The posted speed limit is 50 miles per hour (mph).

SPICEWOOD SPRINGS ROAD runs in an east-west direction and is identified as a MAD 6 in the AMATP. In the study area Spicewood Springs Road is primarily five-lane (thee lanes eastbound and two lanes westbound), median-divided facility with bike lanes on either side. The posted speed limit is 35 mph and speed data collected along Spicewood Springs Road near Hart Lane indicated the 85th percentile speed to be greater than 40 mph.

<u>Far West Boulevard</u> runs in an east-west direction and has a change in cross-section at the intersection of Hart Lane. In the *AMATP* Far West Boulevard is identified as a **MAD 6** east of Hart Lane and a **MAU 4** west of Hart Lane. Bike lanes exist on both sides of Far West Boulevard west of Hart Lane. The posted speed limit is 35 mph.

STECK AVENUE runs in an east-west direction and is identified as a **MAU 4** in the *AMATP*. Steck Avene is currently a two-lane undivided roadway west of Loop 1 and east of Loop 1 is a two-lane roadway with a two-way-left-turn-lane (TWLTL). In the study area, bike lanes exist on both sides of Steck Avenue and the posted speed limit is 30 mph.

Existing Roadway	Roadway Classification	Direction	# of Lanes	Median Type	Speed Limit (mph)
Loop 1 Frontage Roads Frontage Road (FWY)		North-South	3	One-Way	50
Spicewood Springs Road Major Arterial (MAD 6)		East-West	4	Raised	35
Far West Boulevard	Major Arterial (MAD 6/MAU 4)	East-West	6/4	Raised	35
Steck Avenue Major Arterial (MAU		East-West	2/3	Undivided	30
Executive Center Drive	Neighborhood Collector	East-West	2	Undivided	30
Greystone Drive	Neighborhood Collector	East-West	2	Undivided	30
Hart Lane	Neighborhood Collector	North-South	2	Undivided	30
Wood Hollow Drive	Neighborhood Collector	North-South	2	Undivided	30

Table 3 – Existing Roadway Characteristics

C. EXISTING TRAFFIC VOLUMES

Weekday AM and PM peak period turning movement counts (TMCs) were collected in March 2014 at the required study area intersections while schools were in session. These counts were grown at 2% annually to estimate 2016 volumes. 24-Hour recording machine counts were collected in March 2016 (while schools were in session) to verify that the March 2014 counts grown at 2% were accurate. The 2014 counts were compared to the 2016 24-hour counts and the percent difference (actual-expected)/expected) was calculated. The results of the comparison show the TMCs used in the analysis were greater than the actual 2016 counts and were within an acceptable margin of error when compared to the 24-hour counts. *Table 4* below shows the results of this comparison.

Roadway	24-Hour	TMC	% Difference
Executive Center Dr	176	190	8%
Far West Blvd	4,418	5,142	16%
Hart Lane	939	1,020	9%
Spicewood Springs Rd	4,174	4,791	15%
Wood Hollow Dr	1,013	1,148	13%

Table 4 – Existing and Projected Count Comparison

Note: The 24-hour volume shown is the sum of the 2016 AM and PM peak hour bi-directional volume along the designated roadway. The TMC volume shown is the corresponding approach volumes used for the Existing conditions analysis (2014 TMCs grown at 2% and adjusted for volume balancing).

The TMCs were volumes balanced at the following locations to keep a consistent volume along the corridor. The volume balancing was balanced on the through volumes and compared to the 24-hour tube volume to confirm accuracy.

- Along Spicewood Springs Road between Mopac Northbound and Southbound Frontage Roads
- Along Spicewood Springs Road between Mopac Southbound Frontage Road and Wood Hollow Drive
- Along Spicewood Springs Road between Wood Hollow Drive and Hart Lane
- Along Loop 1 between Executive Center Drive and Greystone Drive

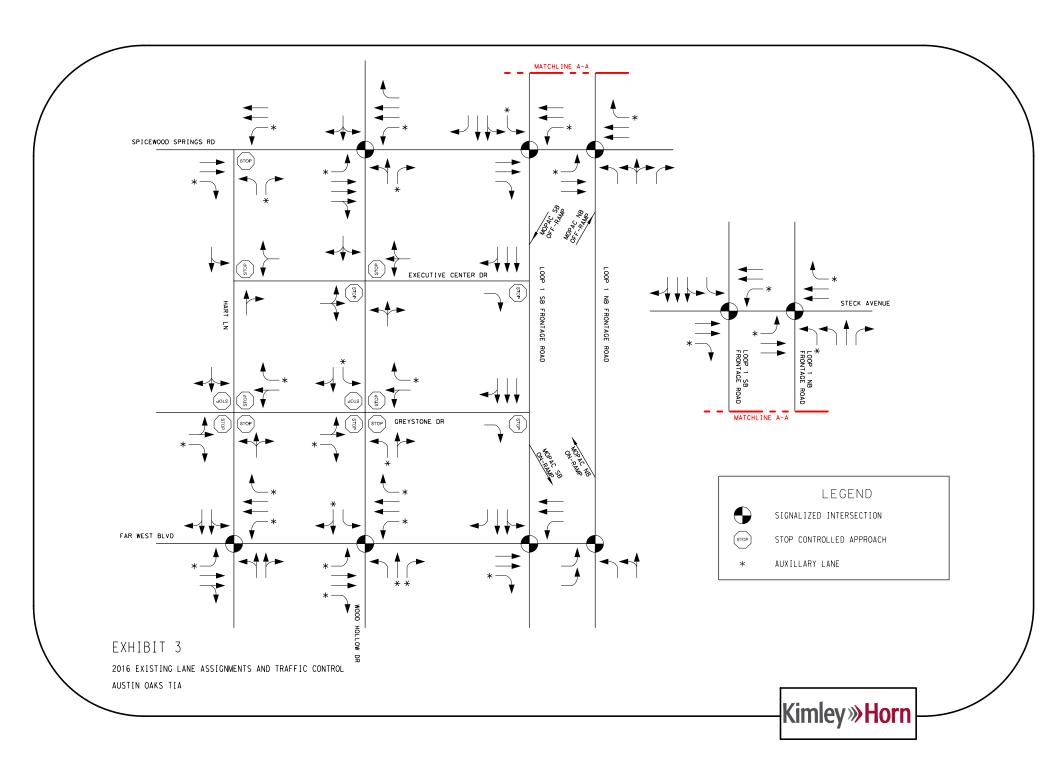
Traffic volumes at Loop 1 On-ramps and Off-ramps were calculated based upon volumes collected at intersections adjacent to each ramp. The following is a brief description of these calculations:

- SB Off-Ramp the volume difference between SB receiving lanes of Mopac & Spicewood Springs and SB approach lanes of Mopac & Executive Center
- SB On-Ramp the volume difference between SB receiving lanes of Mopac & Executive Center Drive and SB approach lanes of Mopac & Far West
- NB On-Ramp the NB receiving lanes of Mopac & Far West
- NB Off-Ramp the NB approach lanes of Mopac & Spicewood Springs

An additional TMC was collected at the intersection of Steck Avenue and Loop 1 frontage roads in April of 2016 while schools were in session; these counts were not adjusted as they were collected in year 2016. *Exhibit 4* shows existing weekday AM and PM peak hour traffic volumes used for the analysis of 2016 Existing Scenario. A Peak Hour Factor (PHF) was calculated for each intersection and applied to all movements at that intersection. The HCM 2010 recommends one peak hour for the entire intersection: "The use of a single peak hour factor for the entire intersection is intended to avoid the likelihood of creating demand scenarios with conflicting volumes that are disproportionate to the actual volumes during the 15-min analysis period."

The raw traffic counts are provided in *Appendix E*. The peak hour counts included in Appendix E are year 2014. The volumes shown in *Exhibit 4* are year 2016 (2014 volumes grown by 2% annually). Additionally, due to volume balancing the peak hour counts and count exhibits will differ at the aforementioned intersections.

D. BACKGROUND TRAFFIC GROWTH


In order to obtain background traffic projections, the existing traffic counts and historic counts near the site were compared to find expected growth trends within the study area. Based on count data from TxDOT, traffic volumes around the study area have an average annual growth rate of 2%. Per City's recommendation, traffic volume was assumed to increase at a growth rate of two (2) percent per year for all future scenarios. Based on discussions with the City, no planned developments were included in this analysis.

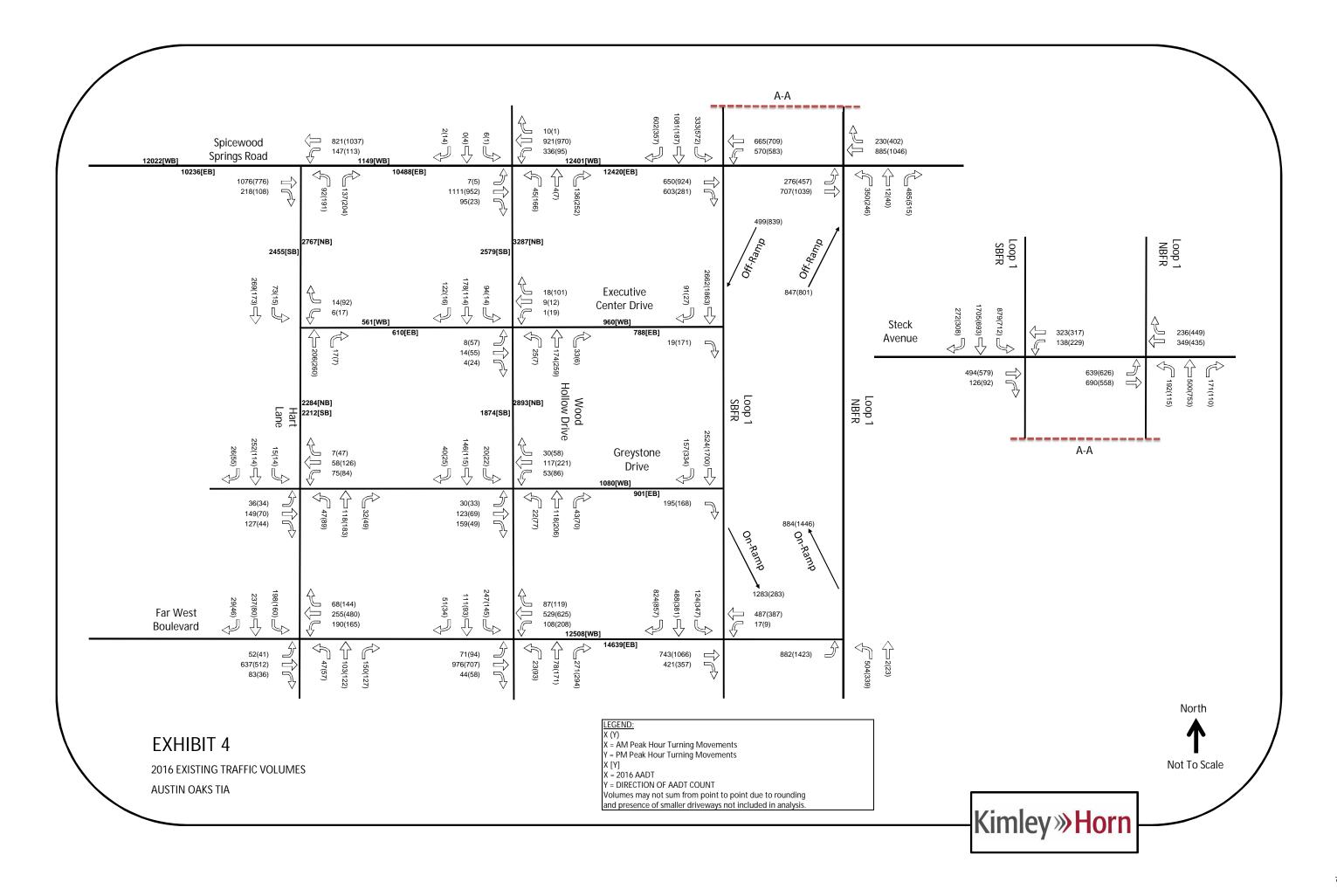

Table 5 below shows historic AADT on roadways in the vicinity of the proposed development provided by the TxDOT Statewide Planning Map. The average annual growth rate for the total AADT between 2007 and 2013 is approximately 2.1%.

Table 5 – Calculations for Background Growth Rate

Year	Volume			Annual	Average Annual	
i cai	SH 360	US 183	Loop 1	Total	Growth Rate	Growth Rate
2013	47,881	188,725	172,032	408,638	1.40%	
2012	46,000	186,000	171,000	403,000	4.40%	
2011	44,000	178,000	164,000	386,000	-4.93%	
2010	45,000	187,000	174,000	406,000	5.73%	
2009	49,000	167,000	168,000	384,000	-1.29%	2.1%
2008	52,000	165,000	172,000	389,000	7.46%	
2007	55,000	141,000	166,000	362,000		

A. LOS ANALYSIS METHODOLOGY

Kimley-Horn conducted a traffic operations analysis to determine potential capacity deficiencies at the study-area intersections in all analysis years. The acknowledged source for determining overall capacity is the current edition of the Highway Capacity Manual.

Capacity analysis results are listed in terms of Level of Service (LOS). LOS is a qualitative term describing operating conditions a driver will experience while traveling on a particular street or highway during a specific time interval. It ranges from "A" (very little delay) to "F" (long delays and congestion). *Table 6* shows the definition of level of service for signalized and unsignalized intersections. LOS D is considered the threshold for acceptable operations for signalized intersections.

Level of Service	Signalized Intersection Average Total Delay (Sec/Veh)	Unsignalized Intersection Average Total Delay (Sec/Veh)		
Α	≤10	≤10		
В	>10 and ≤20	>10 and ≤15		
С	>20 and ≤35	>15 and ≤25		
D	>35 and ≤55	>25 and ≤35		
E	>55 and ≤80	>35 and ≤50		
F	>80	>50		

Table 6 – Level of Service

Definitions provided from the Highway Capacity Manual, Special Report 209, Transportation Research Board, 2010.

Study area intersections were analyzed based on average total delay analysis for signalized intersections. For the unsignalized analysis, the level of service (LOS) is defined for each controlled approach. HCM 2010 calculations were used to report delay at all-way stop-controlled intersections and roundabouts. The HCM 2010 calculations do not support the analysis of diamond intersections and frontage roads. Therefore, HCM 2000 calculations were used to report delay at signalized intersections and two-way stop-controlled intersections. Synchro calculations were used to report the 95th percentile queue length at signalized intersections.

Intersection LOS is a well-rounded metric for traffic signal operation because it is a weighted average of approach delay and approach volume. On arterial type of facilities with coordinating timing, the City typically programs the signals to minimize delay on the major street and allow the minor street to experience a potential lower LOS. If signal timing splits are optimized without regard for the coordinated system, an acceptable LOS can be achieved at all approaches but the intersection LOS is worse. Based on discussions with the City, LOS is looked at by specific effected movements, and mitigation, including signal timing adjustments, is required to restore approach delay to an acceptable LOS.

B. 2016 EXISTING ANALYSIS RESULTS

An analysis of the 2016 Existing scenario was performed using the 2016 Existing Lane Assignments and Traffic Control (*Exhibit 3*) and 2016 Existing Volumes (*Exhibit 4*). The existing signal timings (included as *Appendix F*), provided by the City, were used for the analysis. *Table 5* and *Table 6* summarize the intersection operations for the 2016 Existing scenario AM and PM peak hours, respectively. Synchro¹ reports, including signal timing plans, for the 2016 analyses are provided as *Appendix M*.

Existing (2016) Observations:

- <u>Spicewood Springs Road & Hart Lane</u>. Vehicles making the northbound left-turn movement from Hart Lane onto Spicewood Springs Road have difficulty finding acceptable gaps. As stopcontrolled, the northbound approach experiences an unacceptable in the PM peak hour. Furthermore, the westbound left-turn movement is stopped-controlled which is atypical for an intersection of this configuration.
- <u>Spicewood Springs Road & Wood Hollow Drive.</u> The queue length (95th percentile) reported at the westbound left-turn movement of Spicewood Springs Road to Wood Hollow Drive exceeds the existing bay length.
- <u>Spicewood Springs Road & Wood Hollow Drive</u>. The northbound approach of Wood Hollow
 Drive at Spicewood Springs Road experiences an unacceptable LOS in the PM peak hour due
 to the high volume at this approach.
- <u>Spicewood Springs Road & Loop 1 SBFR.</u> The southbound approach of Loop 1 SBFR at Spicewood Springs Road experiences an unacceptable LOS due to the high volume at this approach
- <u>Spicewood Springs Road & Loop 1 SBFR.</u> The eastbound approach of Spicewood Springs Road at Loop 1 SBFR experiences an unacceptable LOS in both AM and PM peak hours. Delay at this approach is increased because the right-turn movement operates as a stopcontrolled movement.
- <u>Executive Center Drive & Loop 1 SBFR.</u> The southbound right-turn volume from Loop 1 SBFR to Executive Center Drive exceeds the threshold at which a deceleration lane should be considered (50 vehicles per hour (vph)) per TxDOT Access Management Requirements.

The intersection of Hart Lane and Far West Boulevard has permitted-protected signal heads installed at all approaches. During peak hours, the minor street operates as split phased. Because the minor street approaches have a shared thru-left lane configuration, Synchro was artificially increasing the effective green time of the left-turn movements when these approaches were modeled with permitted-protected phasing. Therefore, the northbound and southbound approaches were molded with split phasing where the shared thru-left lane configuration existed.

¹ Due to Synchro limitations the westbound approach of Spicewood Springs Road at Hart Lane cannot be modeled with an uncontrolled thru movement and a stop-controlled left-turn movement. The left-turn movement turning speed was reduced to most accurately represent the operations at this unique intersection configuration.

- <u>Greystone Drive Executive Center Drive & Loop 1 SBFR.</u> The southbound right-turn volume from Loop 1 SBFR to Greystone Drive exceeds the threshold at which a deceleration lane should be considered (50 vph) per TxDOT Access Management Requirements.
- <u>Far West Boulevard & Hart Lane</u>. The northbound and southbound approaches of Hart Lane
 experience an unacceptable LOS at the intersection of Far West Boulevard. There is delay at
 these approaches because majority of the signal's green time is allocated to the major roadway
 (Far West Boulevard).
- <u>Far West Boulevard & Wood Hollow Drive</u>. The northbound approach of Wood Hollow Drive at Far West Boulevard experiences an unacceptable LOS due to the high northbound right-turn volume.
- Far West Boulevard & Loop 1 SBFR. The southbound approach of Loop 1 SBFR at Far West Boulevard experiences an unacceptable LOS due to the high volume at this approach.

C. TRAFFIC SIGNAL WARRANT ANALYSIS

As part of the analysis of 2016 Existing conditions, a traffic signal warrant analysis (TSWA) was performed at the intersection of Spicewood Springs Road and Hart Lane. The TSWA followed procedures outlined in the 2011 *Texas Manual on Uniform Traffic Control Devices* (TxMUTCD). Several variables affect the thresholds needed to meet the nine signal warrants in the 2011 TxMUTCD. For example, speed on the major road, population characteristics of the surrounding area, and distance to the nearest signal all impact the conditions needed to warrant a traffic signal.

24-Hour recording machine counts collected at all approaches of the intersection and spot speed data collected along Spicewood Springs Road were used for this analysis. The raw traffic counts and speed data are provided in *Appendix E*. Although the posted speed limit on Spicewood Springs Road is 35 mph, the spot speed data collected for purposes of this analysis indicate the 85th percentile speed to be greater than 40 mph. Therefore, the '>40 mph' volume thresholds were used for this TSWA.

Furthermore, the right turns associated with the northbound approach of Hart Lane at Spicewood Springs Road were deducted from the total hourly approach volumes as the northbound right-turn is a FREE movement and there is no conflict between this movement and the major street. Based on TMCs previously collected at the approach, 55% of the approach volume was assumed to be turning right at the intersection. Therefore, the hourly approach volume used for this analysis is 45% of the hourly counts collected at this approach.

The number of vehicles at the northbound approach of Hart Lane throughout the day is consistently above the minor street volume threshold for warranting a signal. A traffic signal is warranted based on the 2016 Traffic Volumes at the intersection. Results of the TSWA are summarized in the worksheets included in *Appendix S*.

C. EXISTING AND FUTURE REGIONAL IMPACTS

Loop 1 provides connectivity to regions north of Austin and is used by commuters traveling into Austin from the surrounding regions. Traffic volumes along Loop 1 within the study area are expected to increase as a result of traffic generated by developments beyond the Austin City Limits. Development sprawl occurring north of Austin provides a majority of the increase of traffic on Loop 1. Therefore, the impacts of existing traffic and regional background growth on traffic operations at intersections along Loop 1 will exceed the impacts of local development. Issues along Loop 1

should be addressed at a regional level. The managed lanes currently being constructed on Loop 1 is a starting point for these regional improvements.

As illustrated in *Table 7* and *Table 8*, existing capacity concerns are identified along the Loop 1 corridor. The impacts of these regional issues were observed at intersections in the study area in the Existing (2016) analysis. Although major improvements are necessary at intersections along Loop 1, such improvements were not incorporated because they are not expected to be constructed in the foreseeable future. Regional improvements are required to achieve an acceptable LOS at the intersections along Loop 1. Applicant requests that the City also seek any regional improvement plans for Mopac from TxDOT. Determining these regional improvements is within the control of TxDOT and the City; beyond the scope of mitigation for a local development. The following are issues that will be observed in each future scenario -- all of which require TxDOT approval:

- <u>Spicewood Springs Road & Loop 1 SBFR.</u> Delays are reported at multiple approaches of the
 diamond interchange of Spicewood Springs Road and Loop 1 Frontage Roads. The internal leftturn volumes on the bridge are high as are the external eastbound and westbound approach
 volumes. Geometric improvements within TxDOT's right-of-way are required to achieve an
 acceptable LOS at the intersection which may include an innovative intersection configuration.
- <u>Spicewood Springs Road & Loop 1 NBFR.</u> The northbound approach of Loop 1 NBFR at Spicewood Springs Road experiences an unacceptable LOS due to the high volume at this approach. Additional capacity is needed to achieve an acceptable LOS at the intersection. However, due to railroad constraints, the northbound approach cannot be widened.
- <u>Greystone Drive & Loop 1 SBFR.</u> The eastbound approach of Greystone Drive at Loop 1 SBFR experiences an unacceptable LOS.
- <u>Loop 1 SBFR</u>. The Loop 1 SBFR is oversaturated particularly between the Loop 1 southbound on-ramp and off-ramp between Spicewood Springs Road and Far West Boulevard. Based on existing AM peak hour volumes (>3,000 vehicles in AM peak), increased capacity is needed to accommodate the volume of vehicles traveling southbound along Loop 1.
- <u>Far West Boulevard & Loop 1 SBFR</u>. The southbound approach of Loop 1 SBFR at Far West Boulevard experiences an unacceptable LOS due to the high volume at the southbound left-turn movement. All vehicles making a left-turn movement at this approach are destined to go north on Loop 1. Constructing an exclusive U-turn lane north of the existing Far West Boulevard bridge would remove vehicles making a southbound left-turn movement from this approach. Additionally, these vehicles will also be removed from the eastbound left-turn movement.
- <u>Steck Avenue & Loop 1 SBFR/NBFR</u>. The southbound and eastbound approaches of Loop 1 SBFR at Steck Avenue experience an unacceptable LOS in AM and PM peak hours. Similarly, the northbound and westbound approaches of Loop 1 NBFR at Steck Avenue experience an unacceptable LOS. Delays are reported at the external approaches of the diamond. Additional capacity is needed at the intersection to provide adequate traffic operations.

TABLE 7

2016 AM PEAK HOUR ANALYSIS RESULTS

AUSTIN OAKS TIA

Required Study Area			2016 No Build Condition				
Intersection	Traffic Control	Approach	95% Queue	V/C	Delay	LOS	
Chinavand Chriman		EB	0	0.33	0	Α	
Spicewood Springs Road & Hart Lane	TWSC/ Signalized	WB	24	0.25	1.9	Α	
rtodd a Flait Earlo		NB	79	0.54	28.7	С	
		EB	279	0.46	19	В	
Spicewood Springs		WB	m382	0.84	18.8	В	
Road & Wood	Signalized	NB	76	0.2	45.1	D	
Hollow Drive	Ī	SB	0	0.01	43.3	D	
	ŀ	INT			20.8	С	
		EB	#824	1.45	198.6	F	
Spicewood Springs		WB	m527	0.85	15.3	В	
Road & Loop 1	Signalized -	SB	m384	1.19	72.1	Е	
SBFR	F	INT			91.7	F	
		EB	m40	0.4	2.1	А	
Spicewood Springs		WB	440	0.76	38.7	D	
Road & Loop 1	Signalized	NB	#549	1.31	99.9	F	
NBFR		INT			44.1	 D	
		WB	3	0.04	11.5	В	
Executive Center	TWSC	NB	0	0.16	0	A	
Drive & Hart Lane		SB	5	0.16	2.2	A	
		EB	8	0.07	17.4	B	
Executive Center		WB	5	0.09	17.4	<u>в</u> В	
Drive & Wood	TWSC/ AWSC						
Hollow Drive		NB	2	0.02	1.1	A	
		SB	7	0.08	2.5	A	
Executive Center	TWSC	EB	2	0.02	9.4	Α .	
Dr. & Loop 1 SBFR		SB	0	0.66	0	A	
		NB	2.2	0.435	14.3	В	
Greystone Drive &	AWSC	EB	2.2	0.442	13.6	В	
Hart Lane		WB	1.5	0.343	14	В	
		SB	4.2	0.618	18.8	В	
		INT			15.4	В	
		NB	1.3	0.319	11.9	В	
Cravatara Driva 9		EB	1.3	0.302	11.1	В	
Greystone Drive & Wood Hollow Drive	AWSC	WB	1.5	0.347	12.2	В	
Wood Hollow Blive		SB	1.7	0.367	12.5	В	
		INT			11.8	В	
Greystone Drive &	TWOO	EB	149	0.79	56.4	Е	
Loop 1 SBFR	TWSC	SB	0	0.62	0	Α	
		EB	357	0.65	34.7	С	
Faw West	ŀ	WB	206	0.58	37.5	D	
Boulevard & Hart	Signalized	NB	190	0.8	62.9	E	
Lane		SB	282	0.89	65.6	E	
		INT			46.5		
		EB	478	0.57	30.2	С	
East \\/ast		WB	m180	0.49	29.4		
Faw West Boulevard & Wood	Signalized	NB	#208	0.49	68.8	E	
Hollow Drive	Jigitali260	SB	303	0.72	45.6		
•			303	0.07		D D	
	I	INT	070	0.57	37.9		
Faw West		EB	373	0.57	20.2	C	
Boulevard & Loop	Signalized	WB	m12	0.41	2.8	A	
1 SBFR	<u> </u>	SB	m158	0.89	26.8	С	
		INT			20.4	C	
Faw West Blvd. &	<u> </u>	EB	13	0.42	3.3	Α	
Loop 1 NBFR	Signalized	NB	306	0.57	41	D	
· 		INT			17	В	
		EB	#325	0.88	62	Ε	
Steck Avenue &	Signalized	WB	m42	0.4	5.2	Α	
Loop 1 SBFR	Oigi ialized	SB	#1445	1.3	143.8	F	
		INT			114.7	F	
		EB	m122	0.61	4.1	А	
Stock Avenue 9	Ciama a l'	WB	208	0.73	54.8	D	
Steck Avenue &			ī				
Loop 1 NBFR	Signalized -	NB	m#1195	2.58	610	F	

TABLE 8

2016 PM PEAK HOUR ANALYSIS RESULTS

AUSTIN OAKS TIA

Intersection	Re	2016 No Build Condition					
Spicewood Springs Road & Hart Lane Signalized WB 14 0.34 1 A A A A A A A A A	Intersection	Traffic Control	Approach	95% Queue	V/C	Delay	LOS
No. No.	Spicowood Springs		EB	0	0.25	0	А
Spicewood Springs Road & Wood Hollow Drive Signalized Hollow Drive		TWSC/ Signalized	WB	14	0.34	1	Α
Spicewood Springs Road & Wood Hollow Drive Signalized Signalized NiB M291 0.76 64.2 E E E E E E E E E			NB	329	1.01	77.4	Ε
NB			EB	201	0.33	11.7	В
Hollow Drive SB 30 0.03 49.1 D				253	0.46	_	
Second Springs Signalized		Signalized	NB	#291	0.76	64.2	E
Spicowood Springs Road & Loop 1 Signalized Signaliz	Hollow Drive		SB	30	0.03	49.1	
Spicewood Springs Road & Loop 1 SBFR Signalized Signalized SB M692 0.09 86.1 F SB M692 0.072 34.3 C SB M893 1.35 161.1 F S5 SB M893 1.35 161.1 F S5 SB M893 1.35 161.1 F F S5 SB M893 1.35 SB M693 M693						20.3	
Road & Loop 1 Signalized	Spicewood Springs			#714			F
SBFR INT 66.4 E		Signalized			_		
Spicewood Springs Road & Loop 1 NBFR Signalized NBF Signalized NBFR Signalized Signalized NBFR Signalized		Ü		#582	1.09		
Spicewood Springs Road & Loop 1 NBFR Signalized NB							
Road & Loop 1 NBFR	Spicewood Springs						
No		Signalized					
Executive Center Drive & Hart Lane	NBFR			#534	1.35		
Executive Center Drive & Hart Lane TWSC NB					0.00		
Executive Center Drive & Wood Hollow Drive TWSC/ AWSC EB 63 0.48 23.3 C WB 32 0.3 114.1 B MB 0 0.001 0.3 A SB 1 0.02 0.9 A SB SB A D D D SB SB A D D D D D D D D D	Executive Center	TMCC					
Executive Center	Drive & Hart Lane	10050				0.25 0 A 0.34 1 A 1.01 77.4 E 0.33 11.7 B 0.46 10 A 0.76 64.2 E 0.03 49.1 D 0.76 64.2 E 0.03 49.1 D 0.77 60.5 B 1.09 86.1 F 66.4 E 0.77 7.3 A 0.72 34.3 C 1.35 161.1 F 50.6 D D 0.23 12.3 B 0.21 0 A 0.02 0.8 A 0.02 0.8 A 0.04 0.3 A 0.02 0.8 A 0.49 23.1 C 0.48 0 A 0.5255 14.6 B 0.209	
Executive Center Drive & Wood Hollow Drive							
Drive & Wood Hollow Drive TWSC/ AWSC NB 0 0.01 0.3 A A SB 1 0.02 0.9 A A A SB 1 0.02 0.9 A A A A A A A A A	Executive Center						
Executive Center TWSC EB 65 0.49 23.1 C SB 0 0.48 0 A A C SB 0 0.48 0 A A C SB 0 0.48 0 A A A C SB 0 0.48 0 A A A A A A A A A	Drive & Wood	TWSC/ AWSC					
Executive Center Dr. & Loop 1 SBFR TWSC SB	Hollow Drive						
Dr. & Loop 1 SBFR	For surfice Country						
NB 3.1 0.525 14.6 B		TWSC					
B	DI. Q 2009 1 0DI K						
AWSC							
SB	Greystone Drive &	AWSC					
INT	Hart Lane			1			
NB 2.6 0.486 13.9 B				1.5	0.505		
Seck Avenue & Loop 1 NBFR Signalized S				2.6	0.486		
AWSC WB 3.5 0.562 16.1 B							
SB	•	AWSC		_			
INT	Wood Hollow Drive	7.11.00					
TWSC				·	0.200		
TWSC SB	Grevstone Drive &			99	0.63		
EB 207 0.32 18.8 B		TWSC				0	
Boulevard & Hart Lane Signalized NB 182 0.75 60.7 E						18.8	В
Boulevard & Hart Lane	Faw West		WB	63	0.32	6.3	Α
SB		Signalized	NB	182	0.75	60.7	E
EB	Lane		SB	171	0.73	60.5	E
Signalized Sig			INT			26.3	С
Boulevard & Wood Hollow Drive Signalized NB #297 0.82 65.2 E			EB	199	0.45	15.7	В
SB 202 0.75 65.9 E	Faw West		WB	m184	0.76	30.3	С
SB 202 0.73 05.9 E		Signalized	NB	#297	0.82	65.2	E
EB 538 0.68 18.6 B	Hollow Drive		SB	202	0.75	65.9	E
Faw West Boulevard & Loop 1 SBFR Signalized WB 16 0.25 3.7 A Signalized Signalized WB 16 0.25 3.7 A Faw West Blvd. & Loop 1 NBFR Signalized EB 736 0.93 32.2 C NB 181 0.29 25.4 C Steck Avenue & Loop 1 NBFR Signalized WB 7 0.31 0.7 A Steck Avenue & Loop 1 NBFR Signalized WB ###################################			INT			36.6	D
Signalized Sig	Fav. Wast		EB	538	0.68	18.6	В
SBFR SB		Signalized	WB	16	0.25	3.7	Α
Faw West Blvd. & Loop 1 NBFR Signalized EB 736 0.93 32.2 C NB 181 0.29 25.4 C INT 30.8 C EB #351 0.87 59.4 E WB 7 0.31 0.7 A SB #952 1.34 202.5 F INT 132.2 F EB m376 0.97 15.9 B Steck Avenue & Loop 1 NBFR Signalized WB #503 0.91 56.9 E NB #1460 2.02 458.2 F	-	5.gan20a		#889	1.38		
Signalized NB							
Loop 1 NBFR Signalized NB	Faw West Blvd &			1			
INT 30.8 C Steck Avenue & Loop 1 SBFR EB #351 0.87 59.4 E WB 7 0.31 0.7 A SB #952 1.34 202.5 F INT 132.2 F EB m376 0.97 15.9 B Steck Avenue & Loop 1 NBFR WB #503 0.91 56.9 E NB #1460 2.02 458.2 F		Signalized		181	0.29		
Steck Avenue & Loop 1 SBFR Signalized WB 7 0.31 0.7 A SB #952 1.34 202.5 F INT 132.2 F EB m376 0.97 15.9 B Steck Avenue & Loop 1 NBFR WB #503 0.91 56.9 E NB #1460 2.02 458.2 F							
Loop 1 SBFR Signalized SB #952 1.34 202.5 F INT 132.2 F Steck Avenue & Loop 1 NBFR EB m376 0.97 15.9 B WB #503 0.91 56.9 E NB #1460 2.02 458.2 F							
SB		Signalized					
Steck Avenue & Loop 1 NBFR Signalized EB m376 0.97 15.9 B WB #503 0.91 56.9 E NB #1460 2.02 458.2 F	Loop 1 SBFR	-ignanzou		#952	1.34		
Steck Avenue & Loop 1 NBFR Signalized WB #503 0.91 56.9 E NB #1460 2.02 458.2 F	<u> </u>			6=-	0.07		
Loop 1 NBFR NB #1460 2.02 458.2 F							
NB #1460 2.02 458.2 F		Signalized					
INI 169.8 F	LOUP INDER	-		#1460	2.02		
			IIN I			7 09. 8	r

A. EXISTING AND PROPOSED DEVELOPMENT ASSUMPTIONS (BY PHASE)

The Austin Oaks development will be constructed in phases. Similarly, the existing office development will be removed in phases concurrently with the construction of the proposed development. *Table 9* displays the addition (or removal) of land use for each anticipated phase of development.

Development Existing Office				Proposed Austin Oaks Land Use							
Phase	Year	Removed	Remaining			Restaurant Apartme		Hotel			
Existing	2016	-	445,322 SF		-	-		-			
Phase I	2018	87,837 SF	357,485 SF	215,000 SF	55,000 SF	0 SF	0	0			
Phase II	2020	105,893 SF	339,429 SF	0 SF	0 SF	15,000 SF	250 DU	0			
Phase III	2022	149,822 SF	295,500 SF	207,000 SF	55,000 SF	31,700 SF	0	100 Rooms			
Phase IV	2024	101,770 SF	343,552 SF	250,995 SF	59,000 SF	0 SF	0	0			
Т	otal	445,322 SF	-	672,995 SF	169,000 SF	46,700 SF	250 DU	100 Rooms			

Table 9 – Change in Land Use (By Phase)

Twelve (12) driveways are proposed as part of the Austin Oaks development; ten intersecting Executive Center Drive and two intersecting Wood Hollow Drive. All driveways are full-access, stop-controlled, and will be constructed in phases.

B. EXISTING AND PROPOSED TRIP GENERATION METHODOLOGY

Site-generated traffic estimates are determined through a process known as trip generation. Rates (and equations) are applied to each proposed land use to estimate traffic generated by the development during a specific time interval. The acknowledged source for trip generation rates is the 9th edition of *Trip Generation Manual* published by the Institute of Transportation Engineers (ITE). ITE has established trip rates in nationwide studies of similar land uses. The trips indicated are actually one-way trips or *trip ends*, where one vehicle entering and exiting the site is counted as two trips (one inbound trip and one outbound trip).

Internal capture is the tendency for customers or residents to visit several parts of a mixed-use development in one trip, but be counted twice in the trip generation since the formulae assumes the land uses are isolated. Trips generated by a land use that are not captured internally are referred to as "external trips".

Per City requirements, a 5% reduction was used to calculate trips captured internally for each analysis year. Although the internal capture reduction can be determined at the discretion of the City, a 5% internal capture reduction results in far more trips generated by the proposed development as compared to ITE internal capture methodology. As a results this analysis has 2,126 more daily trips than potentially could be expected. Details of the ITE methodology for internal capture are provided in *Appendix G*.

Per the City of Austin Transportation Criteria Manual, the trips generated by the existing development can be estimated using accepted trip generation methods. The methodology of estimating the existing office development traffic using ITE methodology, as opposed to actual count data, was submitted in the scoping meeting notes

Because these trips are already on the roadway network they are incorporated into the existing and background traffic volumes at intersections in the study area. Existing development trips are subtracted from proposed development trips to calculate "Net New Trips"; *Net New Trips* = *Proposed Office Trips* – *Existing Office Trips*.

To most accurately determine the impact of the proposed development on intersections in the study area, net new trips (the difference between trips generated by the proposed and existing development) are added to No Build Volumes to determine Build Volumes. This prevents trips associated with the existing office development from being "double counted" in the analysis of future conditions. At site driveways, the full trip generation (as opposed to Net New Trips) is used because these movements do not have trips associated with existing volumes. The ITE trip generation rates/equations assumed for existing and proposed land uses are shown in *Table 10*.

Table 10 – ITE Trip Generation Rate

	AM Peak		PM Peak		Weekday	
Land Use	Rate	In:Out Split (%)	Rate	In:Out Split (%)	Rate	In:Out Split (%)
Apartment (220)	T = 0.49(Y) + 3.73	20:80	T = 0.55(Y) + 17.65	65:35	T = 6.06(Y) + 123.56	50:50
Hotel (310)	T = 0.53(Z)	59:41	T = 0.60(Z)	51:49	T = 8.17(Z)	50:50
General Office Building (710)	Ln(T) = 0.80Ln(X) + 1.57	88:12	T = 1.12(X) + 78.45	17:83	Ln(T) = 0.76Ln(X) + 3.68	50:50
Medical-Dental Office Building (720)	T = 2.39(X)	79:21	Ln(T) = 0.90Ln(X) + 1.53	28:72	T = 40.89(X) - 214.97	50:50
Retail/High-Turnover (Sit-Down) Restaurant	T = 10.81(X)	55:45	T = 9.85(X)	60:40	T = 127.15(X)	50:50

Number of Trips Generated (T) = Trip Rate (Development Unit)

X= 1,000 Sq. Ft. GFA

Y= Dwelling Units

Z= Rooms

C. TRIP DISTRIBUTION AND ASSIGNMENT

The trip distribution of site-generated traffic to/from the study area roadway network was developed to reflect the anticipated traffic patterns. Two categories of distribution were used to characterize site-generated traffic for each analysis year: global trip distribution and local trip distribution.

Roadway characteristics, traffic patterns, as well as the 'Journey to Work' concept, were considered in order to determine the global trip distribution. Multiple paths of travel exist for each origin-destination pair. For instance, a vehicle originating at the site and destined to W. Anderson Lane could travel north to Spicewood Springs Road then continue east or travel south via Loop 1 SBFR and make a U-turn at Far West Boulevard. These paths were considered when assigning a percent of trips associated with the proposed development to each movement.

The global trip distribution is not greatly influenced by increased development and the addition of site driveways. Therefore, a single distribution was applied to all analysis scenarios. *Table 11* displays the global directional distribution percentages assumed for the Austin Oaks development.

Direction Roadway **Site Traffic** From the north Mo-Pac/Loop 1 25% From the south Hart Ln. 5% From the south Mo-Pac/Loop 1 25% From the east Anderson Ln. 20% Spicewood Springs Rd. From the west 20% From the west Far West Blvd. 5%

Table 11 – Global Directional Distribution Percentages

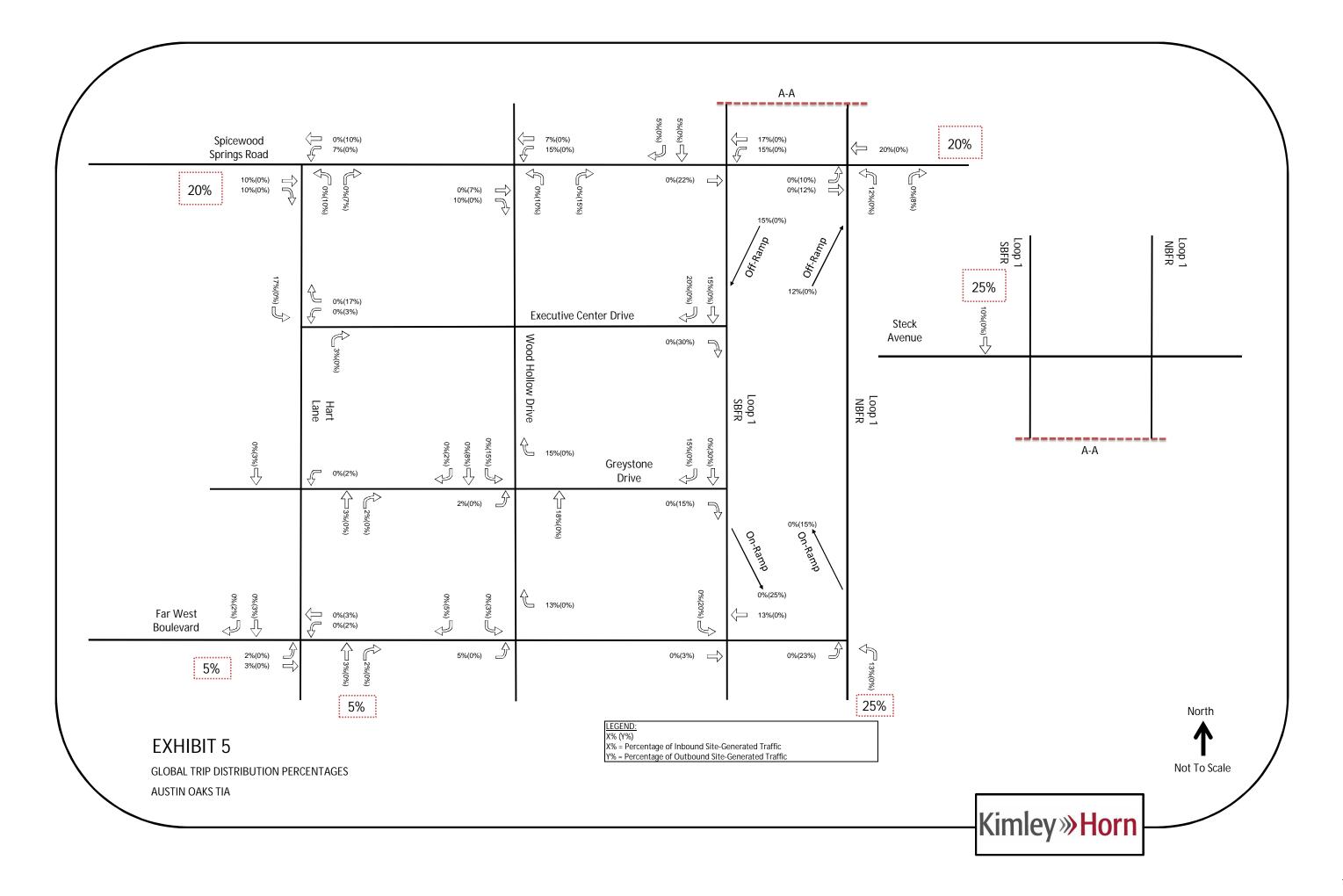
The Global Trip Distribution, shown in *Exhibit 6*, displays the percent of site traffic expected at each movement for all intersections in the study area with the exception of Executive Center Drive & Wood Hollow Drive. Because the intersection of Executive Center Drive & Wood Hollow Drive is in such close proximity with the site, the trip distribution at this intersection will vary with each anticipated phase of development.

A local trip distribution, which is influenced by the intensity of development and the location of proposed driveways, was developed for each analysis year. An exhibit showing local trip distribution percentages for site driveways and the intersection of Executive Center Drive & Wood Hollow Drive is provided for each analysis year. For the local trip distribution, trips were assigned to driveways based on the quantity of trips generated by the land uses the driveway provides access to. Based on the 2024 Build Trip Generation, the percent of trips (average of AM and PM peak hour) generated by each land use and the breakdown of each land use by phase is shown in *Table* 12. For example, the apartment generates 7% of the 2024 trips and 100% of the apartment is anticipated to be constructed in year 2020.

Phase	Year	Apartment Hotel Gen. Off		Med. Off	Restaurant	
% of 2024 Trips		7%	3%	43%	22%	24%
Phase I	2018	0%	0%	32%	33%	0%
Phase II	2020	100%	0%	0%	0%	32%
Phase III	2022	0%	100%	31%	33%	68%
Phase IV	2024	0%	0%	37%	35%	0%

Table 12 – Land Use Trip Generation and Construction

The product of the land use trip generation and the amount of the corresponding land use constructed in each anticipated phase is used to determine the percent of trips allocated to each land use for each analysis year. Ultimately, this information can then be used to calculate the percent of trips generated by each phase for each analysis year. The breakdown (by phase) of total site traffic for each analysis year are shown in *Table 13*. For example, anticipated Phase II generates approximately 40% of total site traffic in year 2020 and 20% in year 2022. Driveways which provide access to each phase were assigned trips accordingly


Table 13 – Local Trip Distribution Information

% Of Total Development Site Trips			Analysis Year						
		2024	2022	2020	2018				
Phase	Phase I	20%	30%	60%	100%				
	Phase II	15%	20%	40%					
	Phase III	40%	50%						
	Phase IV	25%							

Trip distribution percentages (global and local) are multiplied by the corresponding phase trip generation to calculate trip assignment volumes. Although the global trip distribution is expected to be uniform for all analysis years, the global trip assignment volumes are unique for each analysis year due to the variation in the proposed trip generation. For all existing intersections, trip distribution percentages are multiplied by the Net New External Trips to calculate the trip assignment volumes to avoid "double counting" the existing office trips. For all site driveways, trip distribution percentages are multiplied by the Trips (at Site Driveways) to calculate the trip assignment volumes as these driveways were assumed to have no existing office trips.

D. NO BUILD SCENARIOS (ALL FUTURE ANALYSIS YEARS)

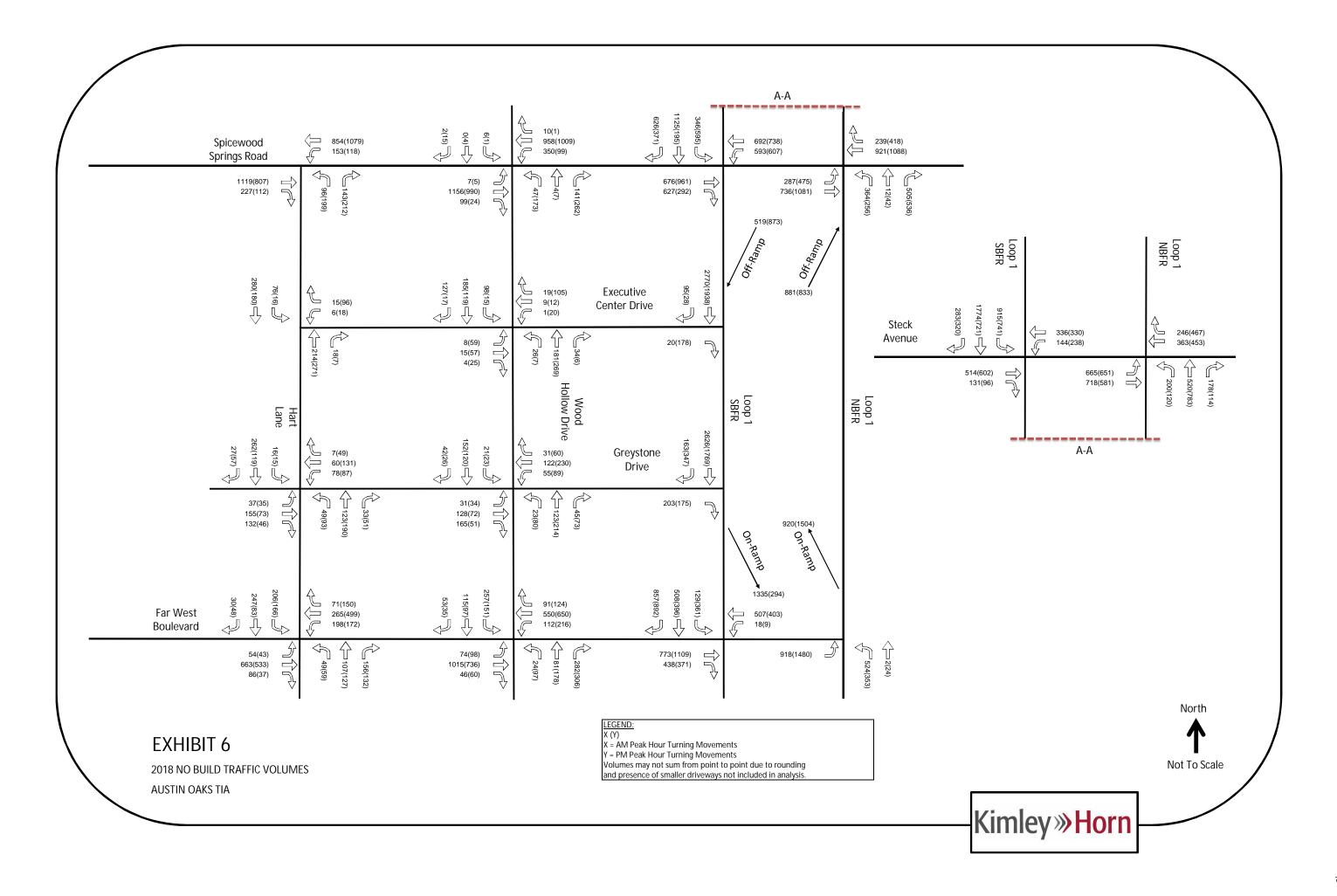
Development and roadway conditions for the analysis of all No Build scenarios were kept the same as 2016 Existing scenario. No Build scenario traffic volumes are calculated by increasing the 2016 Existing scenario volumes by 2% annually. No Build traffic volume conditions are unique to each analysis year and shown in *Exhibits 6, 13, 20, and 27*. For each analysis year, No Build volumes are added to the net new trips generated by the proposed development to determine the traffic volumes used in the analysis of the Build and Mitigated scenarios.

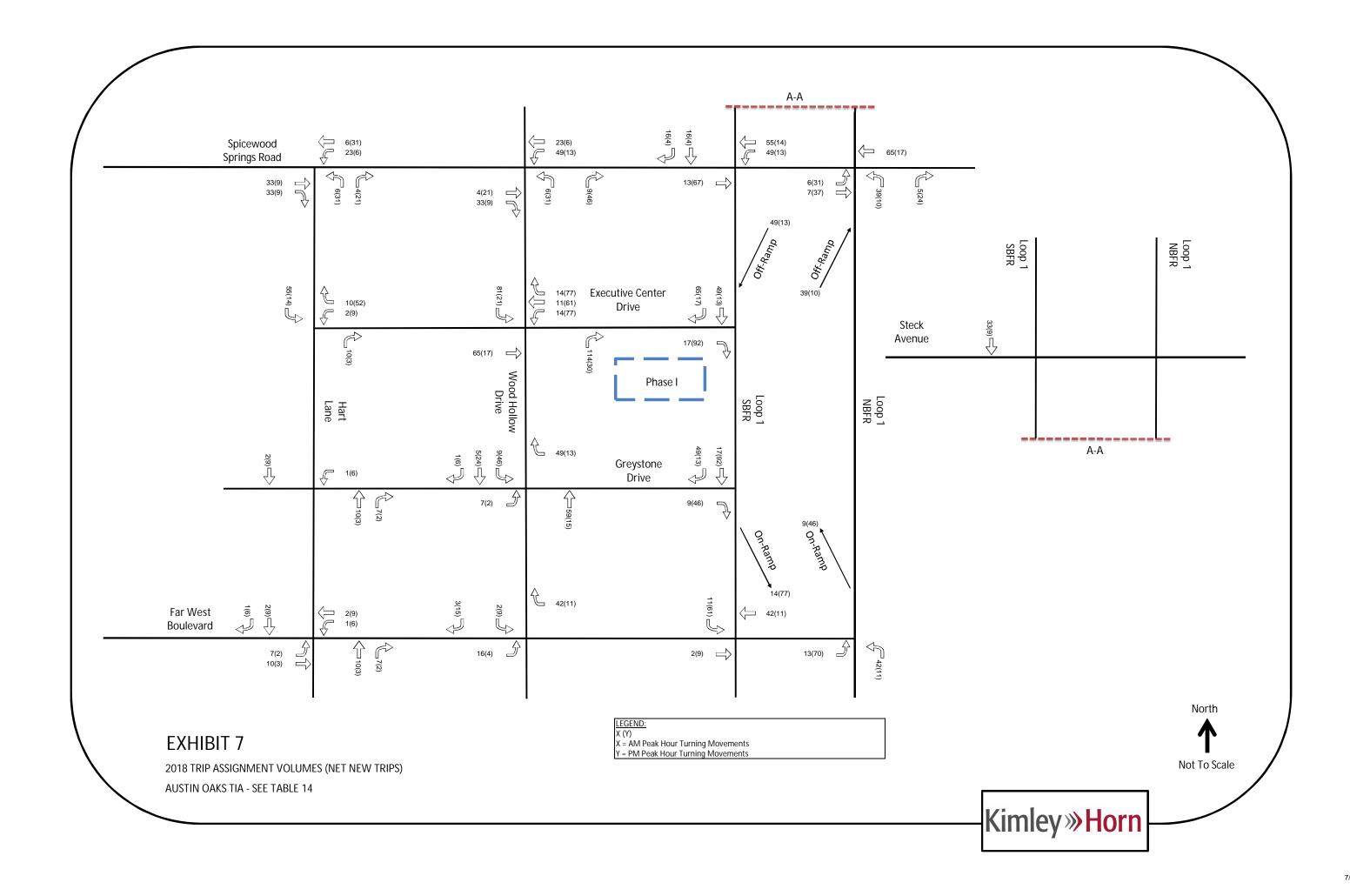
A. TRAFFIC VOLUME CONDITIONS

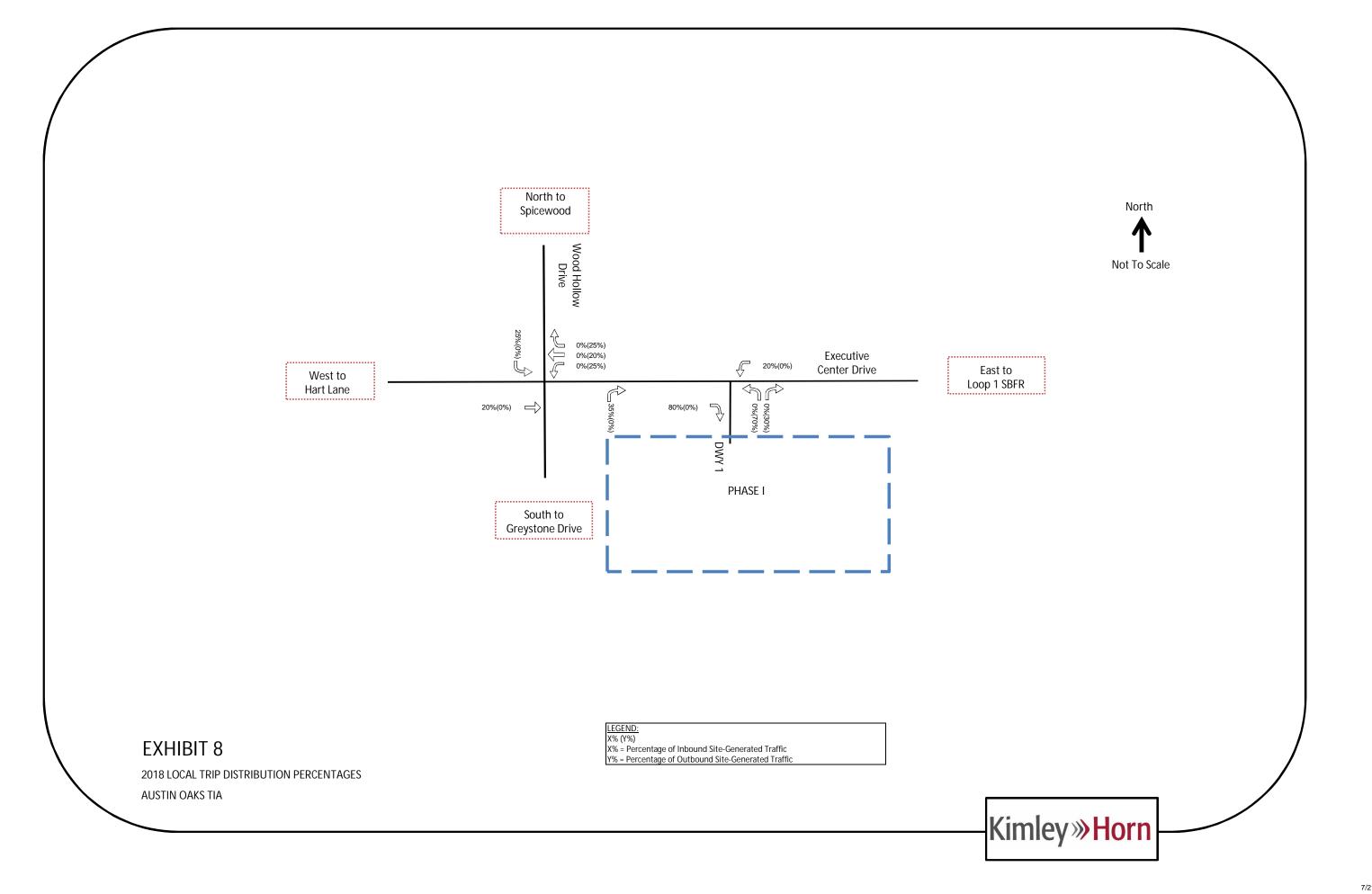
TRIP GENERATION

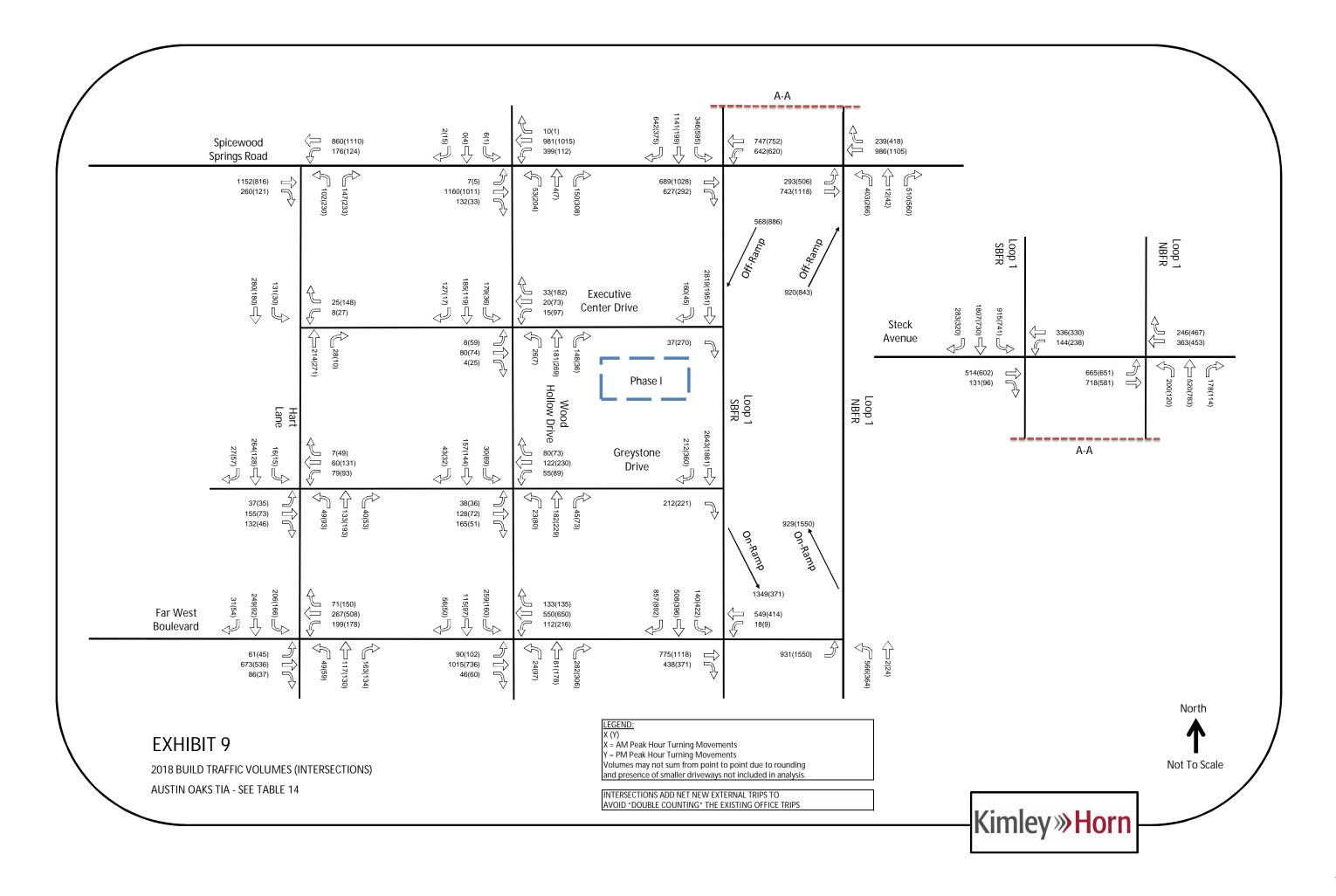
The 2018 Build Scenario assumes the completion of Phase I of the Austin Oaks development. *Table 14* summarizes the Daily, and Weekday AM and PM peak hour trip generation the 2018 Build Scenario based on ITE methodology. 2018 Net New External Trips represent the comprehensive site traffic added to the adjacent roadway network after the anticipated completion of Phase I.

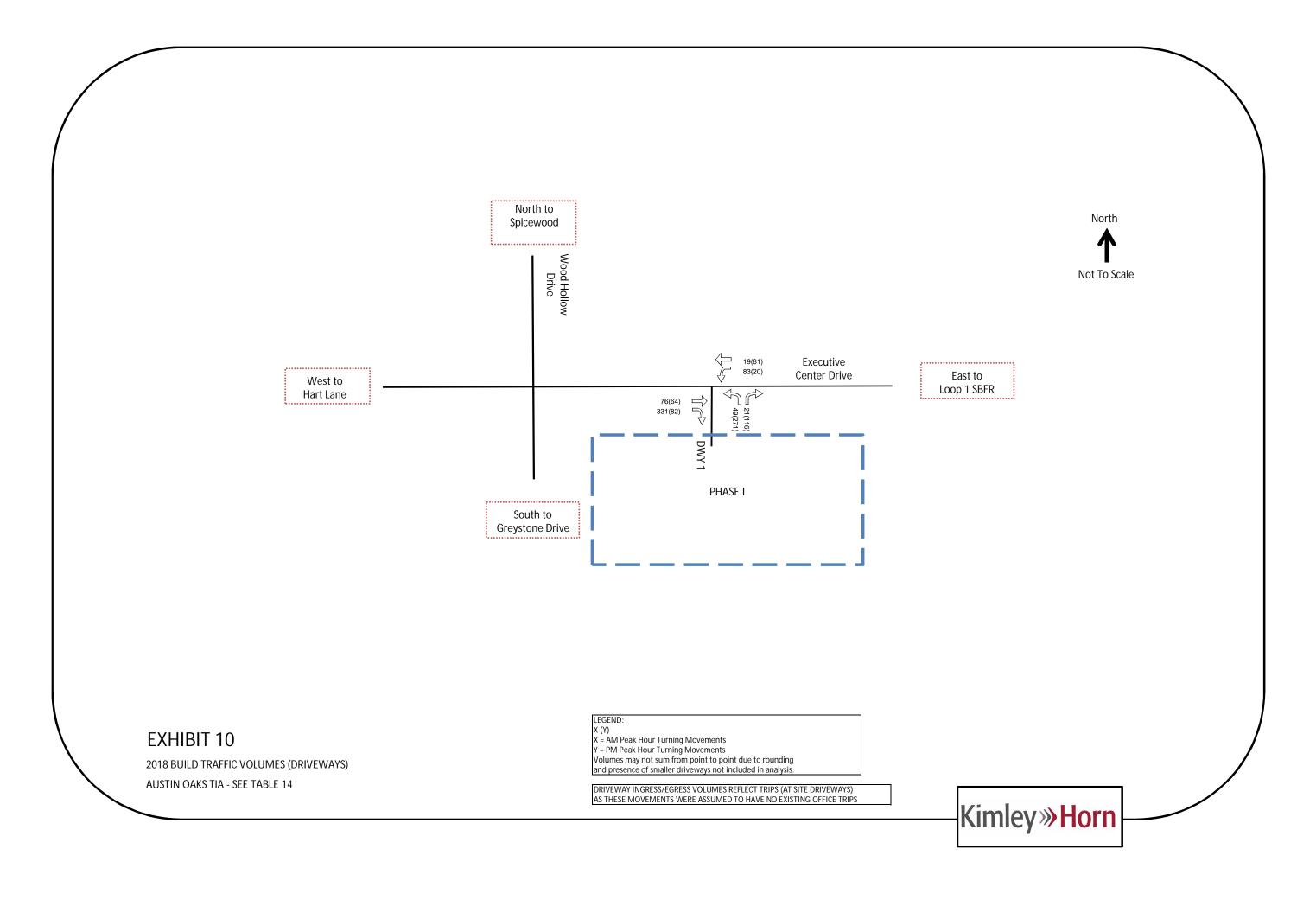
Table 14 – 2018 Build Trip Generation

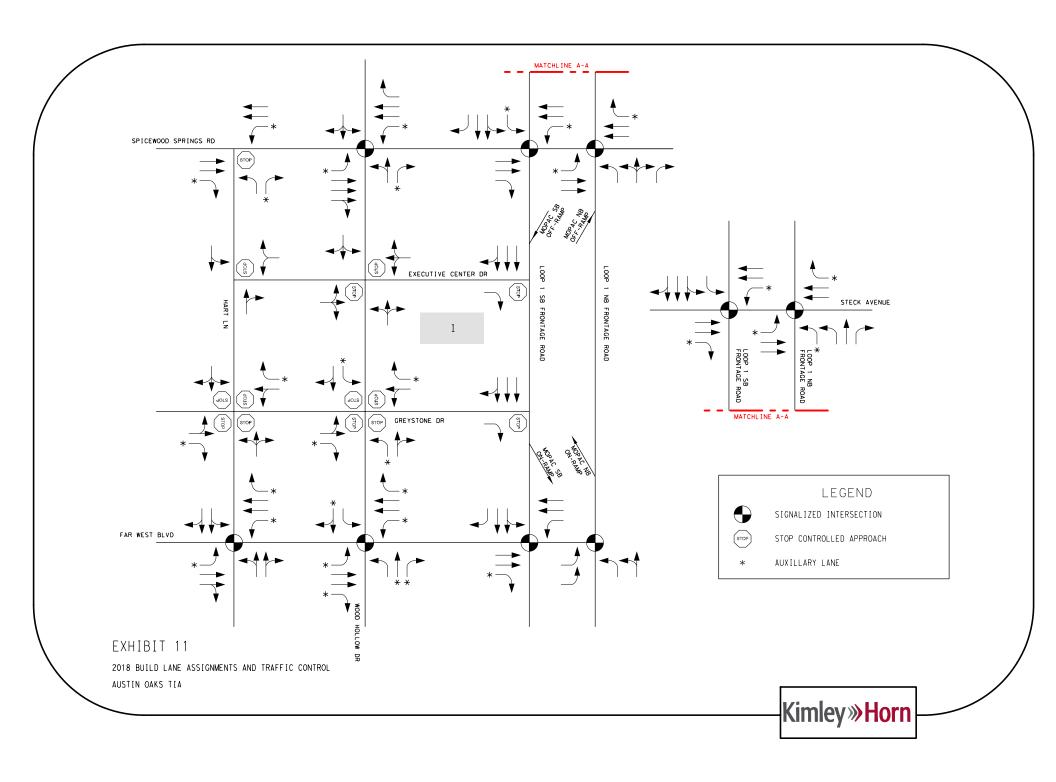

Land Use	Amount Units IT	ITE Code Dai	Doily Tring	AM Peak Hour Trips			PM Peak Hour Trips			
Land OSE	Amount	Units	ITE Code	Daily 111ps	ln	Out	Total	In	Out	Total
Existing General Office Building	445.322	1,000 Sq Ft	710	4,086	556	76	632	98	479	577
Existing General Office Building (To Remain)	357.485	1,000 Sq Ft	710	3,458	467	63	530	81	398	479
Reduction in Existing Office Trips					89	13	102	17	81	98
General Office Building	215.000	1,000 Sq Ft	710	2,349	311	42	353	54	265	319
Medical-Dental Office Building	55.000	1,000 Sq Ft	720	2,034	103	28	131	48	122	170
	2020 Net New Trips						382	85	306	391
	0	0	0	0	0	0	0			
	4,383	414	70	484	102	387	489			
	ernal Trips	3,755	325	57	382	85	306	391		


TRIP DISTRIBUTION AND ASSIGNMENT


The 2018 Trip Assignment Volumes, shown as *Exhibit 7*, are the product of the Global Trip Distribution Percentages and 2018 Net New External Trips, as shown in *Table 14*. The 2018 Local Trip Distribution Percentages, as shown as *Exhibit 8*, were developed based on the size and location of the Austin Oaks development expected to be completed by year 2018.


TOTAL TRAFFIC VOLUMES


For all existing intersections, the assignment volumes were added to 2018 No Build Volumes (*Exhibit 6*) to determine the 2018 Build Traffic Volumes. Existing office trips were not assumed at site driveways. Therefore, the in/out movements to/from site driveways are the product of the Local Trip Distribution Percentages and the Trips (at Site Driveways) shown in *Table 14*. The weekday AM and PM peak hour traffic volumes used for the analysis of the 2018 Build and Mitigated Scenarios are shown in *Exhibit 9* and *Exhibit 10* for network intersections and site driveways, respectively.



B. 2018 BUILD ANALYSIS RESULTS

The analysis was performed using the 2018 Build Lane Assignments and Traffic Control, shown as *Exhibit 11. Table 15* and *Table 16* summarize the intersection operations for the 2018 Build Scenario AM and PM peak hours, respectively. Synchro reports, including signal timing plans, for all 2018 analyses are provided as *Appendix N*. Noteworthy traffic operations at intersections are as follows:

Aforementioned Existing (2016) Observations:

- Spicewood Springs Road & Hart Lane. Vehicles making the northbound left-turn movement from Hart Lane onto Spicewood Springs Road have difficulty finding acceptable gaps. As stopcontrolled, the northbound approach experiences an unacceptable LOS in the PM peak hour. Furthermore, the westbound left-turn movement is stopped-controlled which is atypical for an intersection of this configuration.
- <u>Spicewood Springs Road & Wood Hollow Drive.</u> The queue length (95th percentile) reported at the westbound left-turn movement of Spicewood Springs Road to Wood Hollow Drive exceeds the existing bay length.
- Spicewood Springs Road & Wood Hollow Drive. The northbound approach of Wood Hollow
 Drive at Spicewood Springs Road experiences an unacceptable LOS in the PM peak hour due
 to the high volume at this approach.
- <u>Spicewood Springs Road & Loop 1 SBFR.</u> The southbound approach of Loop 1 SBFR at Spicewood Springs Road experiences an unacceptable LOS due to the high volume at this approach
- <u>Spicewood Springs Road & Loop 1 SBFR.</u> The eastbound approach of Spicewood Springs Road at Loop 1 SBFR experiences an unacceptable LOS in both AM and PM peak hours.
 Delay at this approach is increased because the right-turn movement operates as a stopcontrolled movement.
- <u>Executive Center Drive & Loop 1 SBFR.</u> The southbound right-turn volume from Loop 1 SBFR to Executive Center Drive exceeds the threshold at which a deceleration lane should be considered (50 vph) per TxDOT Access Management Requirements.
- Greystone Drive Executive Center Drive & Loop 1 SBFR. The southbound right-turn volume from Loop 1 SBFR to Greystone Drive exceeds the threshold at which a deceleration lane should be considered (50 vph) per TxDOT Access Management Requirements.
- <u>Far West Boulevard & Hart Lane</u>. The northbound and southbound approaches of Hart Lane
 experience an unacceptable LOS at the intersection of Far West Boulevard. There is delay at
 these approaches because majority of the signal's green time is allocated to the major roadway
 (Far West Boulevard).
- <u>Far West Boulevard & Wood Hollow Drive.</u> The northbound approach of Wood Hollow Drive at Far West Boulevard experiences an unacceptable LOS due to the high northbound right-turn volume.
- Far West Boulevard & Loop 1 SBFR. The southbound approach of Loop 1 SBFR at Far West Boulevard experiences an unacceptable LOS due to the high volume at this approach.

Loop 1 Interchanges. Loop 1 provides connectivity to regions north of Austin is used by commuters traveling into Austin from the surrounding regions. Traffic volumes along Loop 1 within the study area are expected to increase in proportion to the traffic impacts occurring from developments beyond the Austin City Limits. Development sprawl occurring north of Austin provides a majority of the increase of traffic on Loop 1. Therefore, the impacts of existing traffic and regional background growth on traffic operations at intersections along Loop 1 will exceed the impacts of local development.

Build (2018) Observations:

- <u>Executive Center Drive & Wood Hollow Drive</u>. The stop-controlled approaches of Executive
 Center Drive at Wood Hollow Drive experience an unacceptable LOS due to the high volume
 expected at these approaches and the conflicting volume along Wood Hollow Drive.
- <u>Executive Center Drive & Loop 1 SBFR</u>. Vehicles making the eastbound right-turn movement from Executive Center Drive have difficulty finding gaps onto Loop 1 SBFR due to the southbound volume and travel speed of Loop 1 SBFR. As stop-controlled, the eastbound approach experiences an unacceptable LOS.

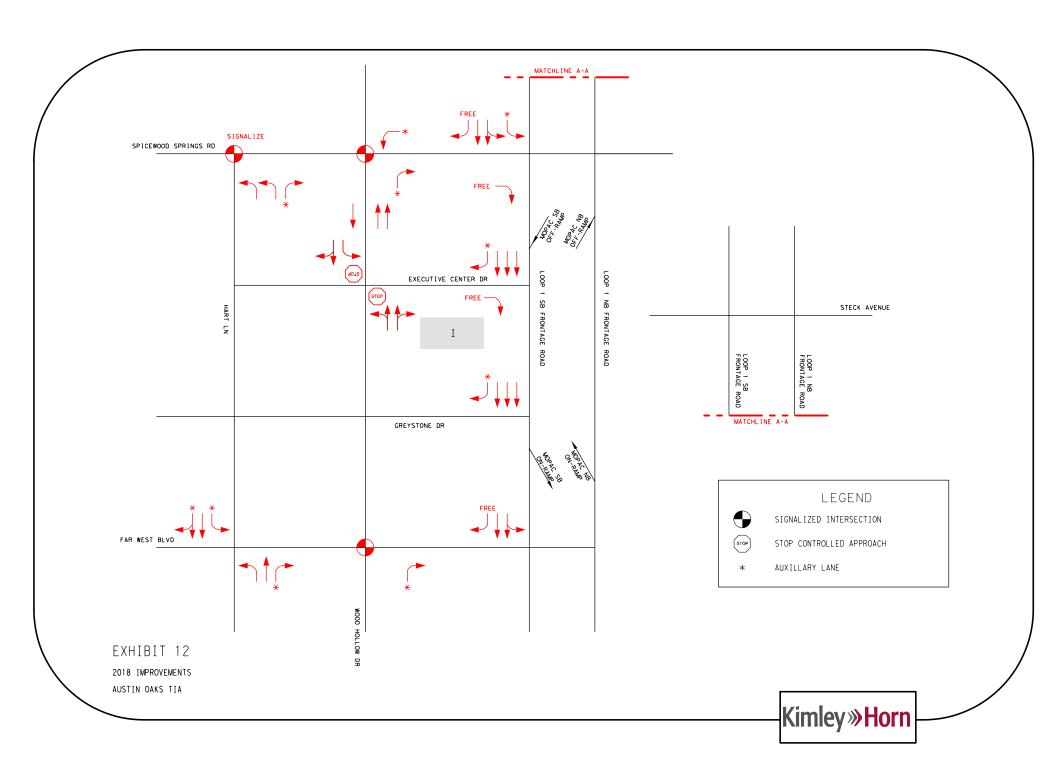
C. 2018 IMPROVEMENTS

Based on the results of the 2018 Build analysis, the following improvements (shown in *Exhibit 12*) are recommended:

- <u>Spicewood Springs Road & Hart Lane (1).</u> Consider installing a fully actuated traffic signal at
 the intersection of Spicewood Springs Road and Hart Lane. Install an advance warning flasher
 west of the intersection synchronized with the traffic signal to address the potential safety issue
 related to the horizontal curvature of Spicewood Springs Road. Widen the northbound
 approach of Hart Lane to include dual left-turns.
- Hart Lane between Executive Center Drive and Spicewood Springs Road (2). Widen Hart Lane between Executive Center Drive and Spicewood Springs Road to accommodate a three-lane northbound approach at the intersection of Hart Lane at Spicewood Springs Road. Restripe the northbound approach of Hart Lane to include dual-left-turn lanes and an exclusive right-turn lane (three 10' approach lanes); a single northbound receiving lane (14') and southbound bike lane (5') will remain.
- Spicewood Springs Road & Wood Hollow Drive (3). Extend the westbound left-turn bay of Spicewood Springs Road to Wood Hollow Drive to provide adequate storage for vehicles making a left-turn movement and prevent spill-back into the adjacent lane. 15% of the inbound trips generated by the Austin Oaks development were assigned to the westbound left-turn movement of Spicewood Springs Road to Wood Hollow Drive. The proposed left-turn bay extension will mitigate the impact of site traffic at this movement.
- Spicewood Springs Road & Wood Hollow Drive (4). Provide a right-turn overlap operation at the northbound right-turn movement of Wood Hollow Drive to Spicewood Springs Road. This will allow the northbound right-turn phase and the westbound left-turn phase to operate simultaneously and decrease delay at the northbound approach of Wood Hollow Drive. 15% of the outbound trips generated by the Austin Oaks development were assigned to the right-turn movement of Wood Hollow Drive to Spicewood Springs Road. The proposed right-turn overlap operation will mitigate the impact of site traffic at this movement.
- Wood Hollow Drive between Executive Center Drive and Spicewood Springs Road (5).
 Concurrently with the right-turn overlap improvement at the northbound right-turn movement of Wood Hollow Drive to Spicewood Springs Road, restripe Wood Hollow Drive between

Executive Center Drive and Spicewood Springs Road to allow two northbound lanes, one southbound lane, and bike lanes on both sides of the roadway. Restricting parking and extending the northbound right-turn lane will maximize the operations at the northbound approach of Wood Hollow Drive at Spicewood Springs Road.

- Spicewood Springs Road & Loop 1 SBFR (6). Provide a FREE, channelized operation at the southbound right-turn movement from Loop 1 SBFR to Spicewood Springs Road (westbound). On Spicewood Springs the existing pavement can accommodate a FREE operation, however, there are design constraints due to the existing bike lane. To the extent possible, an 8' sidewalk will be provided along Mopac Southbound Frontage Road. Any improvements at Mopac Frontage Road are subject to TxDOT approval.
- <u>Spicewood Springs Road & Loop 1 SBFR</u> (7). Provide striping and vertical panels (or other physical barrier) at the southbound receiving lanes of Loop 1 SBFR to facilitate a FREE eastbound right-turn movement from Spicewood Springs Road to Loop 1 SBFR. This movement is currently channelized and a merge with Loop 1 SBFR can be accomplished with existing pavement. 12' receiving lanes should be maintained along Mopac Southbound Frontage Road. To the extent possible, an 8' sidewalk will be provided along Mopac Southbound Frontage Road. Any improvements at Mopac Frontage Road are subject to TxDOT approval.
- Executive Center Drive & Wood Hollow Drive (8). Implement stop-control at the northbound and southbound approaches of Wood Hollow Drive. Restripe the northbound approach of Wood Hollow Drive at Executive Center Drive to include a shared thru-left and a shared thru-right. The shared thru-right lanes will also be marked as shared bike lanes. This will require the north-leg of the intersection to be restriped to provide two receiving lanes. Restripe the southbound approach of Wood Hollow Drive at Executive Center Drive to include an exclusive right-turn lane and a shared thru-left. The proposed cross-sections can be accomplished using existing pavement.
- <u>Executive Center Drive & Loop 1 SBFR (9)</u>. Construct a southbound right-turn deceleration lane on Loop 1 SBFR (upstream of Executive Center Drive). Additionally, install vertical panels (or other physical barrier) along Loop 1 Southbound Off-Ramp to prevent access to Executive Center Drive from southbound Loop 1 Southbound Off-Ramp and reduce weaving in this section of the frontage road. To the extent possible, an 8' sidewalk will be provided along Mopac Southbound Frontage Road. Any improvements at Mopac Frontage Road are subject to TxDOT approval.
- Executive Center Drive at Loop 1 SBFR (10). Construct a southbound acceleration lane on Loop 1 SBFR, downstream of Executive Center Drive to provide a FREE operation at the eastbound right-turn movement of Executive Center Drive. To the extent possible, an 8' sidewalk will be provided along Mopac Southbound Frontage Road. Any improvements at Mopac Frontage Road are subject to TxDOT approval.
- <u>Greystone Drive & Loop 1 SBFR (11)</u>. Construct a southbound right-turn deceleration lane on Loop 1 SBFR (upstream of Greystone Drive). 15% of the outbound trips generated by the Austin Oaks development were assigned to the eastbound right-turn movement of Greystone Drive at Loop 1 SBFR. The proposed southbound right-turn deceleration lane will mitigate the impact of site traffic at eastbound approach by removing vehicles turning right from the southbound thru lane. To the extent possible, an 8' sidewalk will be provided along Mopac Southbound Frontage Road. Any improvements at Mopac Frontage Road are subject to TxDOT approval.
- Far West Boulevard & Hart Lane (12). Widen the northbound approach of Hart Lane to a fivelane cross-section at the intersection of Far West Boulevard. The northbound approach should


include an exclusive left-turn lane, exclusive thru lane, and exclusive right-turn lane; two southbound receiving lanes with remain. Concurrently with the approach widening, a 5' sidewalk should be reconstructed adjacent to the northbound approach of Hart Lane. Restripe the southbound approach of Hart Lane to include an exclusive left-turn lane, exclusive thru lane, and shared thru-right lane (three 10' approach lanes); a single northbound receiving lane (14') will remain.

- Far West Boulevard & Wood Hollow Drive (13). Provide a right-turn overlap operation at the northbound right-turn movement from Wood Hollow Drive to Far West Boulevard. To maximize the benefits of this improvement, restripe the northbound approach to extend the existing right-turn lane.
- Far West Boulevard & Loop 1 SBFR (14). Provide a FREE, channelized operation at the southbound right-turn movement from Loop 1 SBFR to Far West Boulevard (westbound). The existing lane configurations can accommodate a FREE operation because there are three westbound receiving lanes. The right-turn-only lane along Far West Boulevard is recommended to be restriped as a shared thru-right lane between Loop 1 and the first driveway (approximately 400'). The proposed southbound channelized right-turn movement is intended to accommodate the planned bike lane. However, it remains unclear what further improvements will be necessary to accommodate the bike lane west of the intersection. To the extent possible, an 8' sidewalk will be provided along Mopac Southbound Frontage Road. Any improvements at Mopac Frontage Road are subject to TxDOT approval.

The 2018 improvements recommended along Mopac Southbound Frontage Road between Spicewood Springs Road and Far West Boulevard are incorporated into a single exhibit provided as *Appendix H.* Exhibits showing 2018 Improvements at a conceptual level are provided as *Appendix I.*

D. 2018 MITIGATED ANALYSIS RESULTS

The 2018 Mitigated analysis was performed using the 2018 Build Traffic Volumes and incorporates the 2018 Improvements enumerated above. *Table 15* and *Table 16* summarize the intersection operations for the 2018 Mitigated Scenario AM and PM peak hours, respectively. The 2018 improvements reduce delay such that all approaches in the study area, with the exception of intersections along Loop 1, operate at either an acceptable LOS or report delay less than the No Build scenario.

2018 INTERSECTION AM PEAK HOUR ANALYSIS RESULTS

R	Required Study Area		201	Condition	2	018 Build (Condition		2018 Mitigated Condition					
Intersection	Traffic Control	Approach	95% Queue	V/C	Delay	LOS	95% Queue	V/C	Delay	LOS	95% Queue	V/C	Delay	LOS
		EB	0	0.34	0	Α	0	0.35	0	Α	440	0.64	22.8	С
Spicewood Springs	TWSC/ Signalized	WB	26	0.26	2	A	33	0.31	2.4	A	231	0.36	8.4	A
Road & Hart Lane	-	NB	97	0.61	32.4	С	130	0.71	40	D	69	0.4	23.6	С
		INT EB	294	0.49	20.5	С	305	0.52	21.5	С	485	0.6	20.2 25.9	C
Spicewood Springs		WB	m387	0.45	20.1	С	m#412	0.96	26	С	397	0.94	26.3	С
Road & Wood	Signalized	NB	78	0.2	45.1	D	85	0.23	45.4	D	80	0.18	27.5	С
Hollow Drive		SB	0	0.01	43.3	D	0	0.01	43.3	D	0	0.01	38.5	D
		INT			22.1	С			25.4	С			19.3	В
Spicewood Springs		EB	#868	1.52	215.5	F	#870	1.52	215	F	#455	0.97	51	D
Road & Loop 1	Signalized	WB	m534	0.88	15.9	В	m#597	0.95	18.4	B -	m#597	0.95	18.4	В
SBFR		SB INT	m390	1.24	85.6 102.6	F	m388	1.26	93.2 104.9	F	m388	1.26	80.3 71.8	F E
		EB	m42	0.41	2.2	A	m42	0.42	2.1	A	m42	0.42	2.1	A
Spicewood Springs	.	WB	462	0.79	39.8	D	506	0.85	42.5	D	506	0.85	42.5	D
Road & Loop 1 NBFR	Signalized	NB	#573	1.36	111.3	F	#608	1.43	140.3	F	#609	1.43	139.6	F
NBIT		INT			47.8	D			57.7	Е			58.2	Ε
Executive Center		WB	3	0.04	11.7	В	6	0.07	12.4	В	6	0.07	12.4	В
Drive & Hart Lane	TWSC	NB	0	0.16	0	Α	0	0.17	0	Α	0	0.17	0	Α
		SB	6	0.07	2.3	A	10	0.12	3.5	A	10	0.12	3.5	A
		EB	8	0.1	18.3	В	91	0.65	60.9	E	0.7	0.182	10.6	В
Executive Center Drive & Wood	TWSC	WB NB	6 2	0.07	13.2 1.1	B A	42	0.39	33.8 0.8	C A	0.4 1.9	0.13 0.403	10 11.2	A B
Hollow Drive	1 44 30	SB	7	0.02	2.6	A	15	0.02	4.4	A	3	0.403	13.1	В
		INT	,	0.00	2.0	7.	10	0.17		,,		0.021	20	В
Executive Center		EB	2	0.03	9.7	А	4	0.05	10.3	В	FREE	FREE	FREE	FREE
Dr. & Loop 1 SBFR	TWSC	SB	0	0.69	0	A	0	0.7	0	A	FREE	FREE	FREE	FREE
		NB	2.4	0.463	15.2	В	2.8	0.505	16.3	В	2.8	0.505	16.3	В
		EB	2.5	0.469	14.3	В	2.5	0.476	14.5	В	2.5	0.476	14.5	В
Greystone Drive &	AWSC	WB	1.7	0.364	14.6	В	1.7	0.376	14.9	В	1.7	0.376	14.9	В
Hart Lane		SB	4.8	0.659	20.8	С	5.1	0.671	21.7	С	5.1	0.671	21.7	С
		INT			16.6	В			17.2	В			13.8	В
		NB	1.5	0.338	12.2	В	2.6	0.485	15.5	В	2.6	0.485	15.5	В
Greystone Drive &		EB	1.4	0.32	11.4	В	1.6	0.36	12.8	В	1.6	0.36	12.8	В
Wood Hollow Drive	AWSC	WB	1.7	0.368	12.6	В	1.9	0.394	13.2	В	1.9	0.394	13.2	В
		SB INT	1.8	0.39	13 12.2	B B	2.1	0.429	14.4 13.9	В В	2.1	0.429	14.4 16	B B
Greystone Drive &		EB	179	0.87	72.4	E	212	0.95	92.8	F F	159	0.81	56.2	E
Loop 1 SBFR	TWSC	SB	0	0.64	0	A	0	0.65	0	A	0	0.54	0	A
		EB	375	0.69	36.4	D	382	0.7	37	D	369	0.57	26.1	С
Faw West		WB	215	0.63	40.9	D	215	0.64	41.6	D	215	0.54	25.5	С
Boulevard & Hart	Signalized	NB	197	0.81	64.1	E	207	0.83	65.4	E	180	0.69	51.3	D
Lane		SB	294	0.9	67	E	295	0.91	68	E	248	0.82	55.2	E
		INT	407	0.04	48.5	D	400	0.04	49.4	D	500	0.50	31.8	С
		EB WB	497	0.61	31.5	C	498	0.61	31.2	C D	562	0.58	29.7	С
Faw West Boulevard & Wood	Signalized	NB	m181 #242	0.54 0.81	30 75.9	E	m183 #244	0.56 0.81	35.5 76.9	<i>E</i>	225 156	0.4 0.81	33.6 66.6	C E
Hollow Drive	Olgridii20d	SB	#325	0.68	44.9	D	#334	0.68	45	D	304	0.81	54.9	D
		INT			39.5	D			41	D			41.6	D
		EB	m390	0.6	20	В	m392	0.6	20.1	С	383	0.58	20.3	С
Faw West Boulevard & Loop 1	Signalized	WB	m12	0.43	1.7	Α	m12	0.46	1.8	Α	m12	0.45	8.5	Α
SBFR	Signanzea	SB	m161	0.96	31.6	С	m165	0.97	34.8	С	m171	0.56	11.5	В
		INT		•	22.4	C			23.6	C		• -	26.2	С
Faw West Blvd. &	Cianaliza -	EB	13	0.42	3	A	14	0.43	3	A	21	0.5	6.4	A
Loop 1 NBFR	Signalized	NB INT	320	0.62	44.3 18.1	D B	346	0.68	46.2 19.4	D B	333	0.5	33.2 42.8	C D
+		EB	#345	0.91	66.2	<u>Е</u>	#345	0.91	66.2	<u>Е</u>	#345	0.91	66.2	E
Steck Avenue &		WB	m44	0.42	5.4	A	m44	0.42	5.4	A	m44	0.42	5.4	A
Loop 1 SBFR	Signalized	SB	#1529	1.35	164.1	F	#1562	1.37	171	F	#1562	1.37	171	F
		INT			130.1	F			135.4	F			148.8	F
		EB	m123	0.64	4.2	А	m123	0.64	4.2	А	m123	0.64	4.2	А
Steck Avenue &	Signalized	WB	216	0.76	56.1	E	216	0.76	56.1	E	216	0.76	56.1	Ε
Loop 1 NBFR	Signalized	NB	m#1252	2.7	648.7	F	m#1250	2.7	648.3	F	m#1249	2.7	648.3	F
		INT			215.5	F			215.4	F			182.7	F
_	(Stop-Controlled Appr				Condition			018 Build C					d Condition	
	rsection	Approach	95% Queue	V/C	Delay	LOS	95% Queue	V/C	Delay	LOS	95% Queue	V/C	Delay	LOS
Driveway	y 1 (Phase I)	NB					11	0.13	12.1	В	11	0.13	12.3	В

2018 INTERSECTION PM PEAK HOUR ANALYSIS RESULTS

Required Study Area		2	018 No Bui	ild Conditio	n		2018 Build	Condition		2018 Mitigated Condition				
Intersection	Traffic Control	Approach	95% Queue	V/C	Delay	LOS	95% Queue	V/C	Delay	LOS	95% Queue	V/C	Delay	LOS
		EB	0	0.26	0	Α	0	0.27	0	А	374	0.52	26.2	С
Spicewood Springs	TWSC/ Signalized	WB	16	0.35	1.1	Α	17	0.36	1.1	Α	273	0.42	9.9	Α
Road & Hart Lane		NB	452	1.18	135.1	F	728	1.54	285.9	F	171	0.72	35.3	D
		INT											20.2	С
		EB	212	0.35	11.9	В	223	0.36	12.2	В	353	0.45	10.6	В
Spicewood Springs	0: 1: 1	WB	274	0.48	10.3	В	283	0.48	10.5	В	334	0.58	17.4	В
Road & Wood Hollow Drive	Signalized	NB	#310	0.79	66.1	E	#390	0.93	77.7	E	288	0.56	40.3	D
TIONOW BITTO		SB	31	0.03	49.1	D C	31	0.03	49.1	D	26	0.02	34.9	С
		INT EB	#759	1.14	20.8 119.2	F	#838	1.22	24.3 144.1	C F	#838	1.22	19.3	В F
Spicewood Springs		WB	#/39 m498	0.77	10.9	<u>г</u> В	m504	0.79	11.2	В	#636 M504	0.79	11.2	В
Road & Loop 1	Signalized	SB	#609	1.13	92.6	F F	#609	1.13	93.5	F	#609	1.13	74.8	<i>E</i>
SBFR		INT	#009	1.13	72.2	E	#009	1.13	93.5 81.5	F	#009	1.13	71.8	E
		EB	m180	0.8	7.5	A	m183	0.85	7.8	A	m183	0.85	7.8	A
Spicewood Springs		WB	576	0.75	35.2	D	588	0.76	35.6	D	588	0.76	35.6	D
Road & Loop 1	Signalized	NB	#564	1.42	177.9	F	#591	1.48	192	F	#591	1.48	192	F
NBFR		INT			54.7	D			58.2	E			58.2	E
		WB	24	0.24	12.7	В	45	0.38	14.5	В	45	0.38	14.5	В
Executive Center	TWSC	NB	0	0.22	0	Α	0	0.22	0	Α	0	0.22	0	А
Drive & Hart Lane		SB	1	0.02	0.8	А	3	0.03	1.4	Α	3	0.03	1.4	А
		EB	72	0.52	25.6	С	209	0.97	99.5	F	2	0.409	14.9	В
Executive Center		WB	35	0.33	14.6	В	436	1.15	122.8	F	7.7	0.793	29.4	С
Drive & Wood	TWSC	NB	0	0.01	0.3	Α	0	0.01	0.2	Α	2.3	0.445	15.1	В
Hollow Drive		SB	1	0.02	0.9	А	3	0.04	2	Α	1.7	0.378	14.2	В
		INT											20	В
Executive Center	=00	EB	75	0.53	25.4	С	183	0.83	48.2	D	FREE	FREE	FREE	FREE
Dr. & Loop 1 SBFR	TWSC	SB	0	0.5	0	A	0	0.5	0	Α	FREE	FREE	FREE	FREE
		NB	3.4	0.555	15.6	В	3.6	0.572	16	В	3.6	0.572	16	В
		EB	0.8	0.22	11.5	В	0.8	0.223	11	В	0.8	0.223	11	В
Greystone Drive &	AWSC	WB	2.1	0.43	14.3	В	2.3	0.446	13.8	В	2.3	0.446	13.8	В
Hart Lane		SB	1.4	0.328	11.7	В	1.5	0.349	12	В	1.5	0.349	12	В
		INT			13.4	В			13.8	В			13.2	В
		NB	2.9	0.513	15.7	В	3.6	0.568	16.7	В	3.6	0.568	16.7	В
Crayatana Driva 8		EB	0.8	0.212	11.8	В	0.9	0.231	11.8	В	0.9	0.231	11.8	В
Greystone Drive & Wood Hollow Drive	AWSC	WB	3.8	0.595	18.7	В	4.3	0.629	19	В	4.3	0.629	19	В
TV GGG TIGHGW BIIVG		SB	1.1	0.278	12.2	В	1.5	0.349	13	В	1.5	0.349	13	В
		INT			14.6	В			16	В			16	В
Greystone Drive &	TWSC	EB	118	0.69	40.9	D	216	0.93	78.4	E	120	0.68	32.7	С
Loop 1 SBFR	00	SB	0	0.48	0	Α	0	0.5	0	Α	0	0.42	0	А
		EB	219	0.33	19.5	В	222	0.34	20	В	198	0.3	15.5	В
Faw West		WB	67	0.34	6.7	A	73	0.36	7.1	A	253	0.33	26.1	С
Boulevard & Hart Lane	Signalized	NB	187	0.75	60.6	E	190	0.75	60.5	E	173	0.68	54.6	D
Laile		SB	176	0.74	60.6	E	185	0.75	60.7	E	204	0.72	55.4	E
		INT	400	0.47	26.7	С	400	0.47	27.2	С	400	0.50	31.8	С
		EB	190	0.47	16.2	В	182	0.47	15.9	В	430	0.52	33.7	С
Faw West Boulevard & Wood	Signalized	WB NB	m185 #313	0.82 0.83	31.6 68.2	C E	m184 #313	0.83 0.85	32.5 70.1	C E	328 237	0.71 0.79	35.6 51.2	D D
Hollow Drive	Signalized	SB	#313 210	0.83	66.5	E	#313 221	0.85	68.1	E	237 219	0.79 0.78	66.5	<i>E</i>
		INT	210	0.77	37.9	D	221	0.19	38.9	D	213	0.70	41.6	D
		EB	568	0.72	19.4	В	574	0.73	19.8	В	604	0.73	20.7	С
Faw West	_	WB	16	0.72	3.7	A	16	0.73	3.6	A	16	0.73	3.6	A
Boulevard & Loop 1	Signalized	SB	#977	1.5	180.1	F	#987	1.51	186.2	F	#540	0.99	36.6	D
SBFR		INT			92.4	F			96.5	F		2.00	26.2	С
_		EB	#835	0.97	36.5	D	m#879	1.01	47	D	m#879	1.01	47.1	D
Faw West Blvd. &	Signalized	NB	187	0.31	25.5	С	193	0.32	25.6	С	193	0.32	25.6	С
Loop 1 NBFR		INT			34.3	С			42.7	D			42.8	D
		EB	#373	0.9	63.1	Ε	#373	0.9	63.1	E	#373	0.9	63.1	Ε
Steck Avenue &	Signalizad	WB	7	0.32	0.7	Α	7	0.32	0.7	Α	7	0.32	0.7	Α
Loop 1 SBFR	Signalized	SB	#998	1.4	226.1	F	#1012	1.41	229.1	F	#1012	1.41	229.1	F
		INT			146.8	F			148.8	F			148.8	F
		EB	m373	1.01	19.8	В	m361	1.01	19.8	В	m361	1.01	19.8	В
Steck Avenue &	Signalized	WB	#540	0.96	62.6	Ε	#540	0.96	62.6	E	#540	0.96	62.6	E
Loop 1 NBFR	Jigi lali200	NB	#1524	2.09	488.8	F	#1524	2.09	488.8	F	#1524	2.09	488.8	F
		INT			182.7	F			182.7	F			182.7	F
	Stop-Controlled App													
Interse	ection	Approach												
	(Phase I)	NB	81	0.54	14.8	В	81	0.54	14.8	В				

A. TRAFFIC VOLUME CONDITIONS

TRIP GENERATION

The 2020 Build Scenario assumes the completion of Phases I and II of the Austin Oaks development. *Table 17* summarizes the Daily, and Weekday AM and PM peak hour trip generation the 2020 Build Scenario based on ITE methodology. 2020 Net New External Trips represent the comprehensive site traffic added to the adjacent roadway network after the anticipated completion of Phase I and II.

AM Peak Hour Trips PM Peak Hour Trips ITE Code Daily Trips Land Use Amount Units Out In Out Total In Total Existing General Office Building 445.322 1,000 Sq Ft 710 4,086 556 76 632 98 479 577 Existing General Office Building (To Remain) 251.592 710 2,648 48 61 1,000 Sq Ft 352 400 299 360 Reduction in Existing Office Trips 1,438 204 28 232 37 180 217 **Apartment** 250 Dwelling Unit(s) 220 1,640 25 101 126 101 54 155 General Office Building 215.000 1,000 Sq Ft 710 2,349 311 42 54 265 319 Medical-Dental Office Building 55.000 1,000 Sq Ft 720 2,034 103 28 131 48 122 170 1,000 Sq Ft Retail/High-Turnover (Sit-Down) Restaurant 15.000 932 1,908 89 73 162 59 148 2020 Net New Trips 6,494 324 216 540 255 320 575 468 37 14 50 34 Internal Capture Trip Reduction (5%) 16 50

2020 Trips (at Site Driveways)

2020 Net New External Trips

Table 17 – 2020 Build Trip Generation

TRIP DISTRIBUTION AND ASSIGNMENT

The 2020 Trip Assignment Volumes, shown as *Exhibit 14*, are the product of the Global Trip Distribution Percentages and 2020 Net New External Trips, as shown in *Table 17*. The 2020 Local Trip Distribution Percentages, as shown as *Exhibit 15*, were developed based on the size and location of the Austin Oaks development expected to be completed by year 2020.

7,464

6,026

491

287

230

202

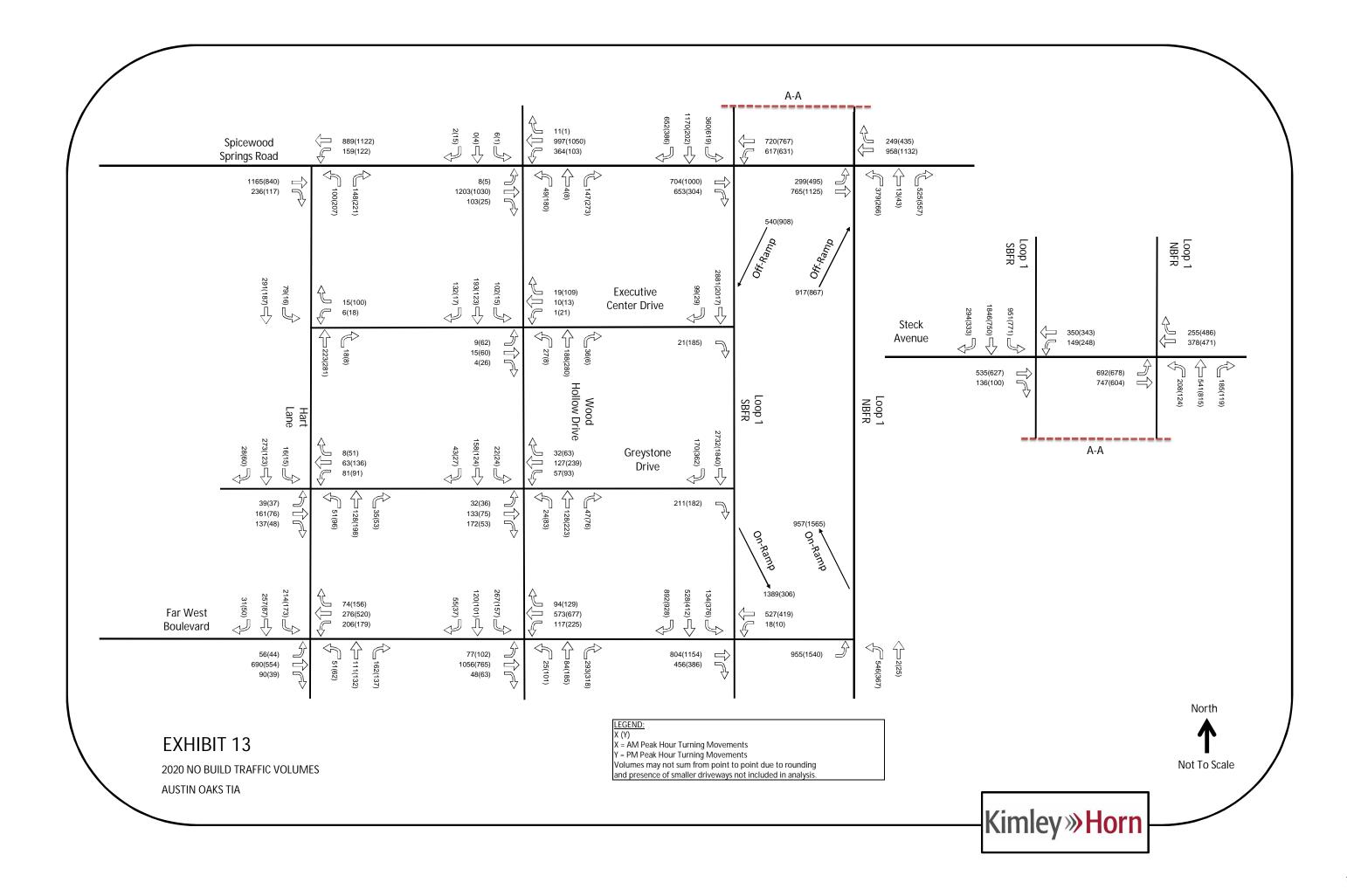
722

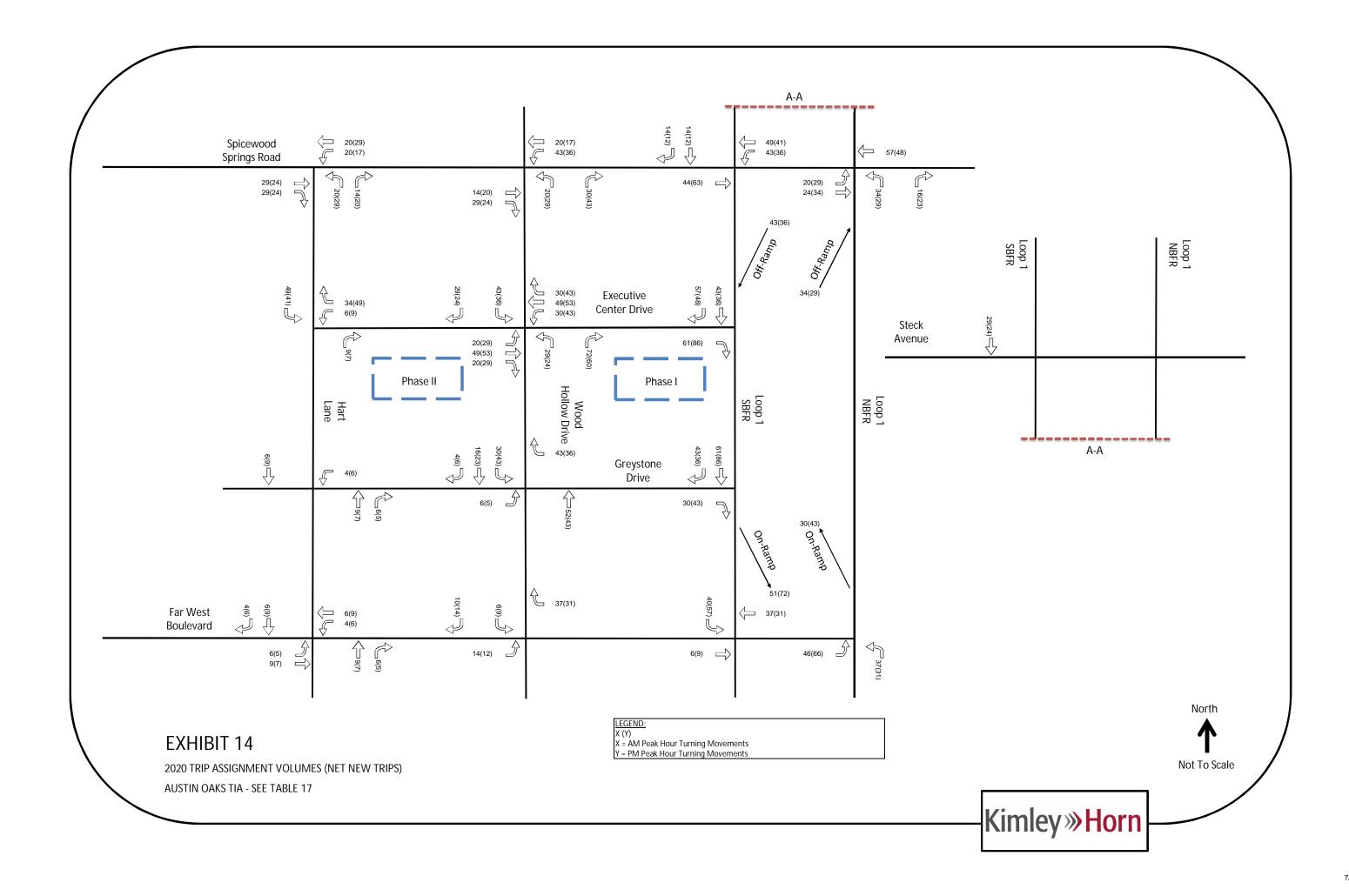
490

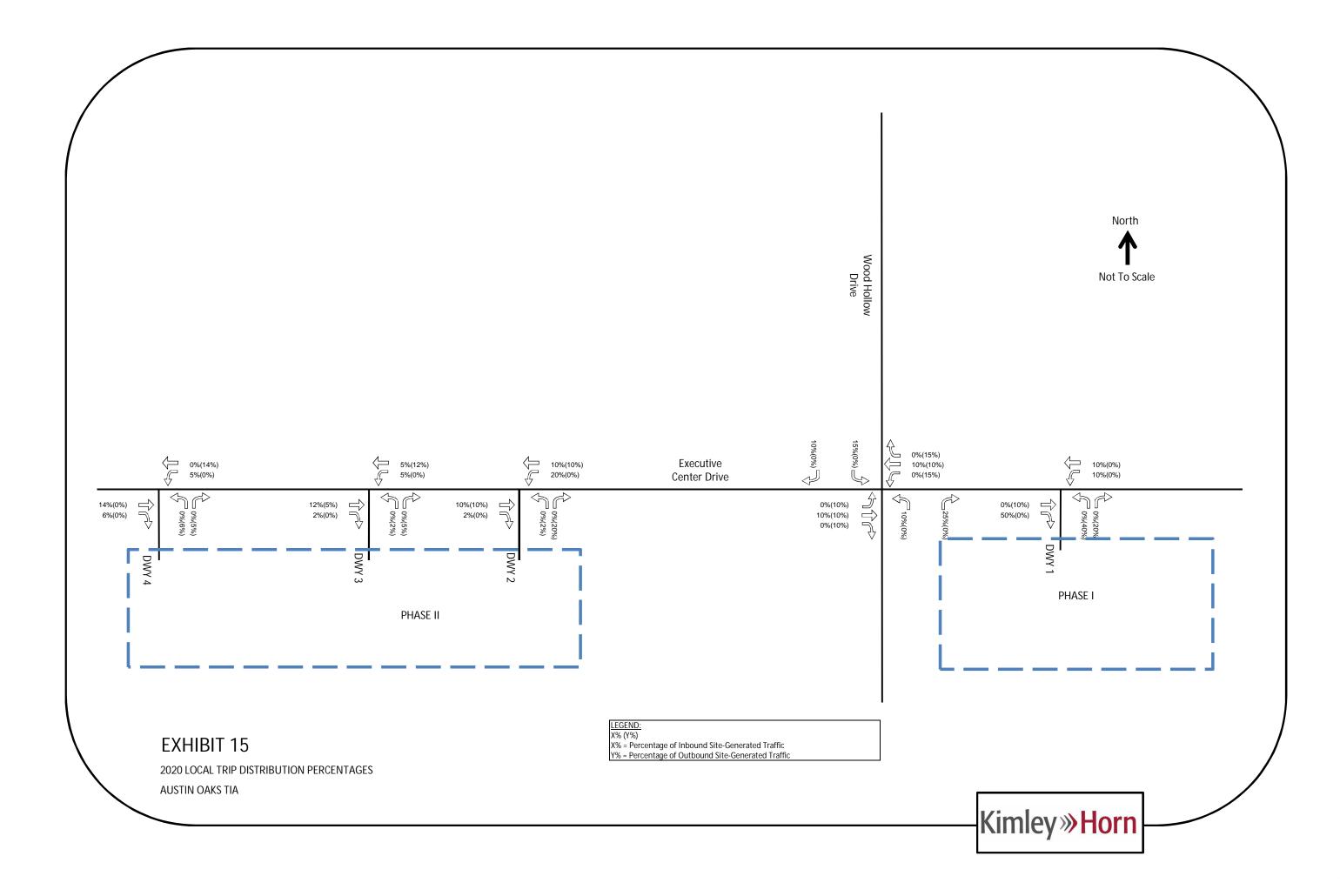
276

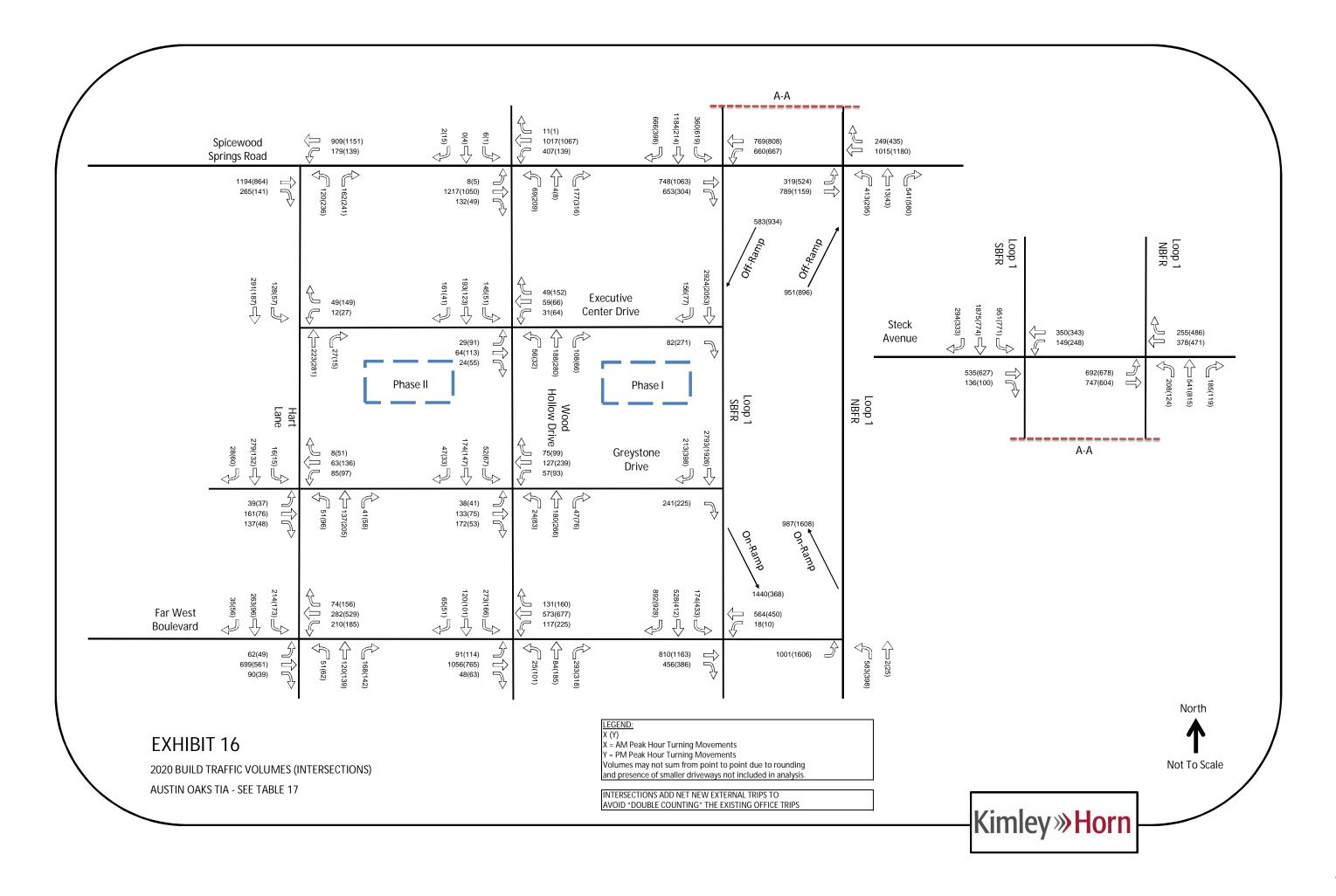
239

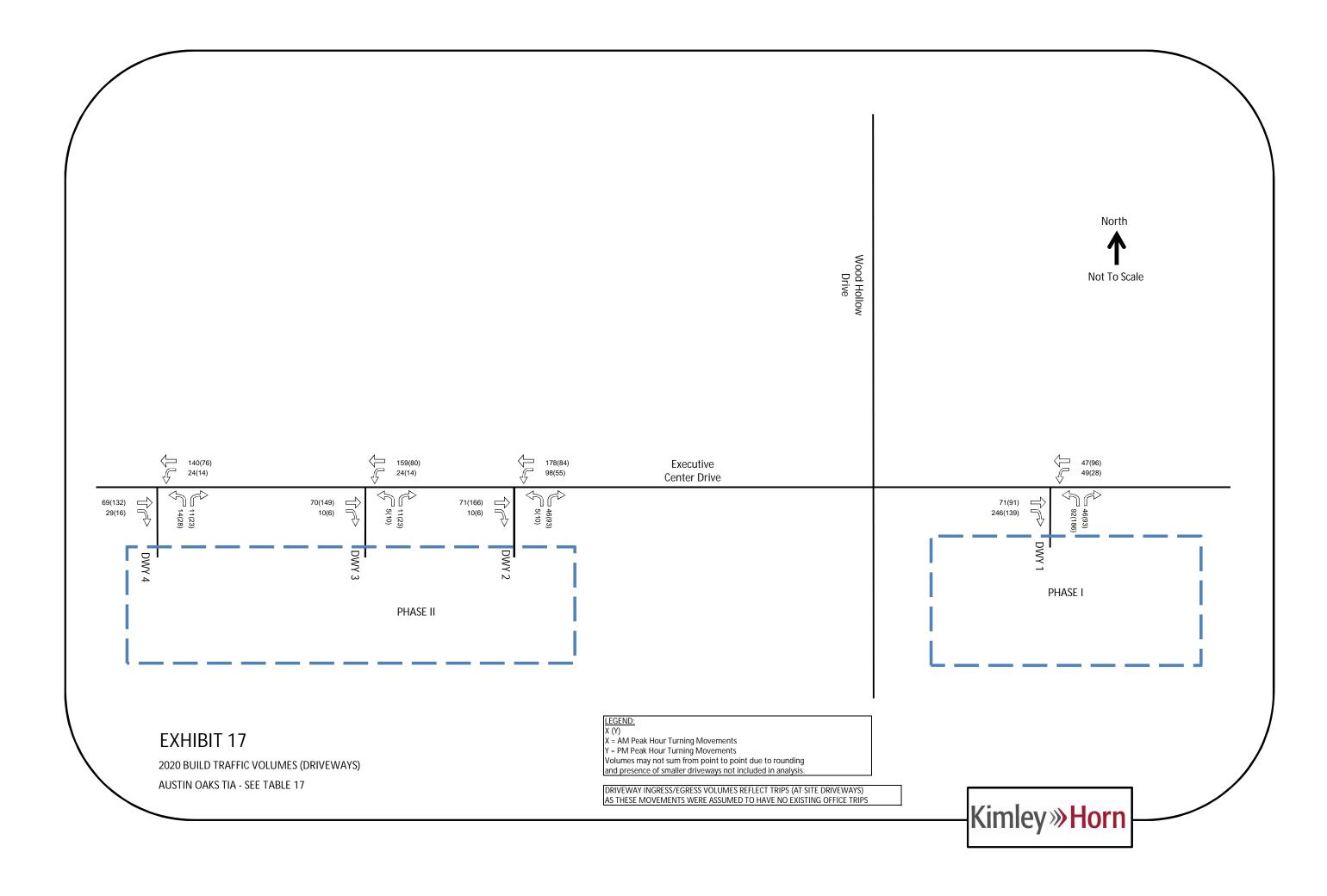
466

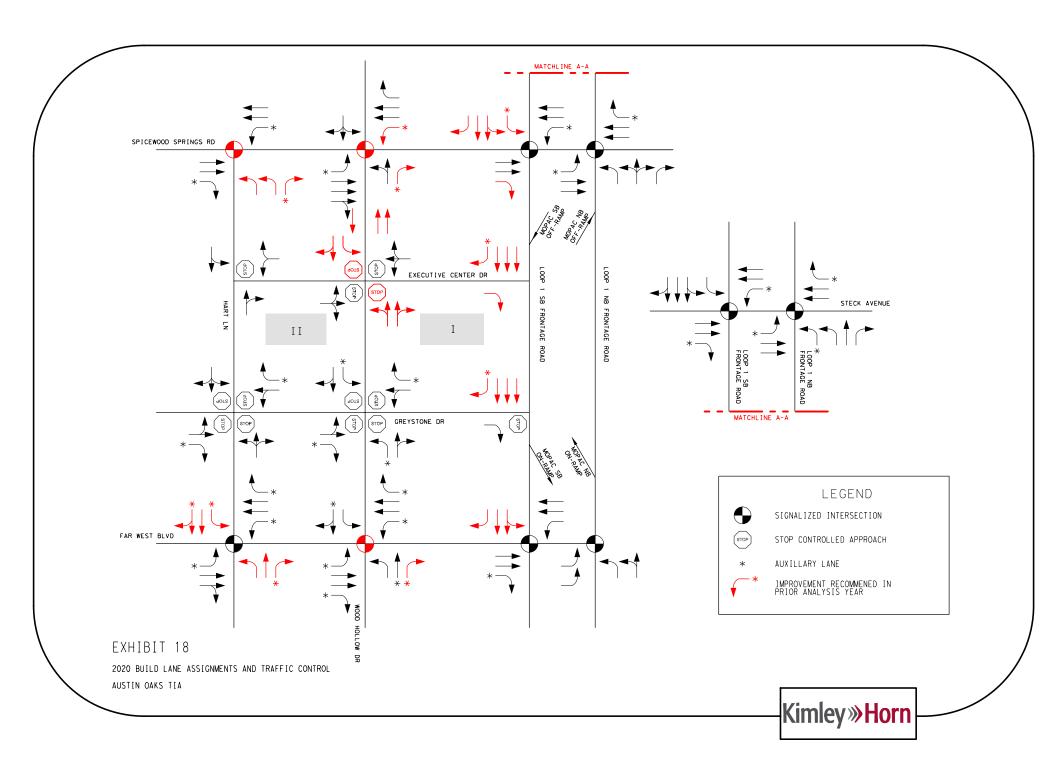

286


742


525


TOTAL TRAFFIC VOLUMES

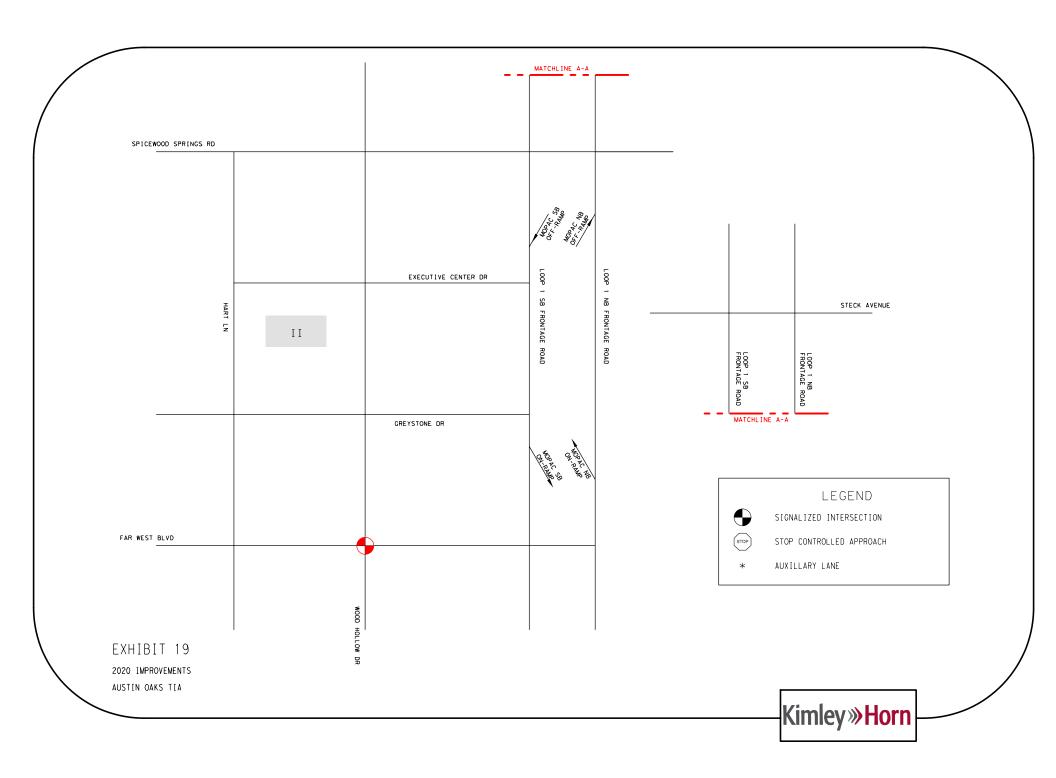

For all existing intersections, the assignment volumes were added to 2020 No Build Volumes (*Exhibit 13*) to determine the 2020 Build Traffic Volumes. Existing office trips were not assumed at site driveways. Therefore, the in/out movements to/from site driveways are the product of the Local Trip Distribution Percentages and the Trips (at Site Driveways) shown in *Table 17*. The weekday AM and PM peak hour traffic volumes used for the analysis of the 2020 Build and Mitigated Scenarios are shown in *Exhibit 16* and *Exhibit 17* for network intersections and site driveways, respectively.



B. 2020 BUILD ANALYSIS RESULTS

The analysis was performed using the 2020 Build Lane Assignments and Traffic Control, shown as *Exhibit 18*, which incorporates improvements recommended in analysis years prior to 2020. *Table 18* and *Table 19* summarize the intersection operations for the 2020 Build Scenario AM and PM peak hours, respectively. Synchro reports, including signal timing plans, for all 2018 analyses are provided as *Appendix O*. Noteworthy traffic operations at intersections are as follows:

- <u>Far West Boulevard & Wood Hollow Drive</u>. The northbound and southbound approaches of Wood Hollow Drive experience an unacceptable LOS at the intersection of Far West Boulevard. The delay at these approaches is caused by the relatively high volumes of the northbound and southbound approaches compared to the green time allocated to these approaches.
- <u>Far West Boulevard & Hart Lane</u>. The southbound approach of Hart Lane experience an
 unacceptable LOS at the intersection of Far West Boulevard. However, because of the
 improvement (recommended previously) at this intersection the delay reported in the Build
 scenario is less than the delay reported in the No Build scenario and no additional mitigation is
 required.
- <u>Spicewood Springs Road & Loop 1</u>. Similar to existing conditions the intersection of Spicewood Springs Road and Loop 1 continues to operate at an unacceptable LOS. (see Existing and Future Regional Impacts)
- <u>Greystone Drive & Loop 1.</u> Similar to existing conditions the eastbound approach of Greystone
 Drive at Loop 1 SBFR continues to operate at an unacceptable LOS. (see Existing and Future
 Regional Impacts)
- <u>Far West Boulevard & Loop 1</u>. Similar to existing conditions the intersection of Far West Boulevard and Loop 1 continues to operate at an unacceptable LOS. (see Existing and Future Regional Impacts)
- <u>Steck Avenue & Loop 1</u>. Similar to existing conditions the intersection of Steck Avenue and Loop 1 continues to operate at an unacceptable LOS. (see Existing and Future Regional Impacts)


C. 2020 IMPROVEMENTS

Based on the results of the 2020 Build analysis, the following improvement (shown in *Exhibit 19*) is recommended:

• <u>Far West Boulevard & Wood Hollow Drive (1)</u> Adjust signal timing at the intersection of Far West Boulevard and Wood Hollow Drive.

D. 2020 MITIGATED ANALYSIS RESULTS

The 2020 Mitigated analysis was performed using the 2020 Build Traffic Volumes and incorporates the 2020 Improvements enumerated above. *Table 18* and *Table 19* summarize the intersection operations for the 2020 Mitigated Scenario AM and PM peak hours, respectively. The 2020 improvements reduce delay such that all approaches in the study area, with the exception of intersections along Loop 1, operate at either an acceptable LOS or report delay less than the No Build scenario.

2020 INTERSECTION AM PEAK HOUR ANALYSIS RESULTS

Required Study Area		202	20 No Build	d Condition			2020 Build	l Condition		2020 Mitigated Condition				
Intersection	Traffic Control	Approach	95% Queue	V/C	Delay	LOS	95% Queue	V/C	Delay	LOS	95% Queue		Delay	LOS
		EB	0	0.35	0	А	440	0.64	22.8	С	464	0.67	23.3	С
Spicewood Springs	TWOO/0:	WB	29	0.28	2.1	Α	231	0.36	8.4	Α	234	0.37	8.6	А
Road & Hart Lane	TWSC/ Signalized	NB	119	0.68	37.5	D	69	0.4	23.6	С	78	0.45	24.5	С
		INT							17.8	В			17.8	В
		EB	310	0.52	21.5	С	485	0.6	25.9	С	506	0.63	26.9	С
Spicewood Springs		WB	m393	0.89	21.3	С	397	0.94	26.3	С	411	0.96	28.5	С
Road & Wood	Signalized	NB	80	0.21	45.2	D	80	0.18	27.5	С	98	0.24	28.2	С
Hollow Drive		SB	0	0.01	43.3	D	0	0.01	38.5	D	0	0.01	38.5	D
		INT			23.1	С			27.8	С			27.8	С
Spicewood Springs		EB	#922	1.6	236.7	F	#455	0.97	51	D	#514	1.05	63	E
Road & Loop 1	Signalized	WB	m534	0.92	16.8	В	m#597	0.95	18.4	В	m568	0.98	17.9	В
SBFR	9	SB	m394	1.29	102.2	F	m388	1.26	80.3	F	m394	1.31	92.1	F
		INT			116.2	F			63	Ε			63	E
Spicewood Springs		EB	m45	0.43	2.2	A	m42	0.42	2.1	Α	m44	0.46	2.2	A
Road & Loop 1	Signalized	WB	487	0.83	41.2	D	#609	0.85	42.5	D	526	0.87	44.1	D -
NBFR		NB	#601	1.41	125.8	F	10	1.43	139.6	F	#636	1.49	156.6	F
		INT	4	0.05	52.5	<u>D</u>	44	0.40	62.8	E	44	0.40	62.8	E
Executive Center	TWEC	WB	4	0.05	11.9	B	11	0.13	12.5	В	11	0.13	12.5	В
Drive & Hart Lane	TWSC	NB SB	0	0.17	0	Α	0	0.18	0	A B	0	0.18	0	A
		SB EB	6	0.07	2.3 19.3	A B	10	0.12 0.244	11.7 11.7	В	10	0.12 0.244	3.4 11.7	A
From the Control		MB	9		19.3	В	0.9 1.1			В	0.9	0.244		B B
Executive Center Drive & Wood	TWSC/ AWSC	NB NB	2	0.08	13.9	A A	1.1	0.283	12 12.2	В	1.1	0.283	12 12.2	В
Hollow Drive	1 44 50/ 744 50	SB	7	0.03	2.6	A	4.6	0.38	16.5	В	4.6	0.38	16.5	В
		INT	/	0.08	2.0	Α	4.0	0.044	14.1	В	4.0	0.044	14.1	В
Executive Center		EB	2	0.03	10.1	В	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE
Dr. & Loop 1 SBFR	TWSC	SB	0	0.03	0	A	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE
		NB	2.7	0.497	16.4	В	3.2	0.541	17.7	В	3.2	0.541	17.7	В
		EB	2.8	0.503	15.1	В	2.9	0.514	15.6	В	2.9	0.514	15.6	В
Greystone Drive & Hart Lane	AWSC	WB	1.8	0.393	15.4	В	2	0.41	16	В	2	0.41	16	В
		SB	5.6	0.703	23.5	C	6.1	0.731	25.5	С	6.1	0.731	25.5	С
		INT	0.0	0.1.00	18	В	U	00.	19.2	В	0	00.	19.2	В
		NB	1.6	0.357	12.7	В	2.8	0.5	16.3	В	2.8	0.5	16.3	В
		EB	1.5	0.336	11.8	В	1.8	0.383	13.5	В	1.8	0.383	13.5	В
Greystone Drive &	AWSC	WB	1.8	0.389	13.1	В	2.1	0.423	14.1	В	2.1	0.423	14.1	В
Wood Hollow Drive		SB	2	0.409	13.5	В	2.6	0.484	15.5	В	2.6	0.484	15.5	В
		INT			12.7	В			14.7	В			14.7	В
Greystone Drive &	TIMOO	EB	214	0.96	95.7	F	240	0.99	97.3	F	240	0.99	97.3	F
Loop 1 SBFR	TWSC	SB	0	0.67	0	Α	0	0.57	0	Α	0	0.57	0	Α
		EB	394	0.73	37.9	D	392	0.59	27.2	С	392	0.59	27.2	С
Faw West		WB	224	0.68	44.5	D	225	0.59	27.5	С	225	0.59	34.6	С
Boulevard & Hart	Signalized	NB	204	0.83	65.5	E	185	0.7	51.3	D	185	0.7	51.3	D
Lane		SB	#321	0.92	69.7	E	255	0.83	55.2	E	255	0.83	55.2	E
		INT			50.8	D			37.2	D			39	D
		EB	m516	0.65	32.9	С	584	0.62	31.3	С	567	0.65	35.4	D
Faw West		WB	m182	0.62	33.7	С	236	0.43	34.5	С	251	0.59	43.7	D
Boulevard & Wood	Signalized	NB	#279	0.88	86.1	F	163	0.82	67	E	#202	0.9	78.4	E
Hollow Drive		SB	#359	0.69	44.3	D	319	0.83	55.6	E	#369	0.7	45.5	D
		INT			42.6	D			41.1	D			45.4	D
Fow Most		EB	m404	0.62	19.9	В	384	0.61	20.3	С	m426	0.61	19.6	В
Faw West Boulevard & Loop 1	Signalized	WB	m11	0.44	1.8	А	m15	0.46	7.3	Α	m15	0.46	7.3	А
SBFR	J.g3.1200	SB	m164	1.02	40.5	D	m190	0.58	12.1	В	m190	0.58	12.1	В
		INT			26.5	С			14.3	В			14	В
Faw West Blvd. &	_	EB	14	0.44	3	Α	21	0.52	6.3	Α	21	0.52	6.3	Α
Loop 1 NBFR	Signalized	NB	334	0.65	45.3	D	357	0.54	35.6	D	357	0.54	35.6	D
•		INT			18.4	<u>B</u>		-	17.1	В			17.1	В
		EB	#367	0.95	71.8	E	#367	0.95	71.8	E	#367	0.95	71.8	E
Steck Avenue &	Signalized	WB	m45	0.43	5.6	<u> </u>	m45	0.43	5.6	A	m45	0.43	5.6	Α
Loop 1 SBFR		SB	#1618	1.41	186.1	F	#1648	1.43	192.2	F	#1648	1.43	192.2	F
-		INT			147	<u>F</u>			151.6	F			151.6	F
_		EB	m123	0.66	4.4	A	m123	0.66	4.4	A	m123	0.66	4.4	Α
Steck Avenue &	Signalized	WB	#234	0.79	57.7	E	#234	0.79	57.7	E	#234	0.79	57.7	E
Loop 1 NBFR		NB	m#1301	2.8	685.8	F	m#1295	2.8	684.8	F	m#1295	2.8	684.8	F
0:4 5 :	<u> </u>	INT		20.11.5	227.4	F		2022 7	227	F		2000 15111	227	F
Site Driveways (Stop-Controlled App	proach Only)	202	zu No Build	d Condition			2020 Build	l Condition		2		ed Conditio	n
Interse	ection	Approach	95% Queue	V/C	Delay	LOS	95% Queue	V/C	Delay	LOS	95% Queue	V/C	Delay	LOS
Driveway 1	I (Phase I)	NB					22	0.23	12	В	22	0.23	12	В
Driveway 2		NB					5	0.06	9.3	Α	5	0.06	9.3	А
Driveway 3		NB					2	0.02	9.3	А	2	0.02	9.3	А
Driveway 4	(Phase II)	NB					3	0.03	9.8	Α	3	0.03	9.8	Α

2020 INTERSECTION PM PEAK HOUR ANALYSIS RESULTS

Required Study Area			2	020 No Bu	ild Conditio	n		2020 Build	l Condition		2020 Mitigated Condition				
Intersection	Traffic Control	Approach	95% Queue	V/C	Delay	LOS	95% Queue	V/C	Delay	LOS	95% Queue	V/C	Delay	LOS	
		EB	0	0.27	0	Α	402	0.55	26.8	С	402	0.55	26.8	С	
Spicewood Springs	TWSC/ Signalized	WB	17	0.37	1.1	Α	270	0.44	10	Α	270	0.44	10	Α	
Road & Hart Lane		NB	584	1.36	209.7	F	174	0.73	35.2	D	174	0.73	35.2	D	
		INT	000	0.00	40.4		000	0.40	20.4	С	000	0.40	20.4	С	
		EB WB	223 305	0.36 0.5	12.1 10.7	B B	398 372	0.49 0.61	12.3 19.4	B B	398 372	0.49	12.3 19.4	B B	
Spicewood Springs Road & Wood	Signalized	NB	#330	0.5 0.83	68.5	E	291	0.61	39.8	D	291	0.58	39.8	D	
Hollow Drive	Olgridii20d	SB	31	0.03	49.1	D	26	0.02	34.9	C	26	0.02	34.9	С	
		INT		0.00	21.4	С			20.6	С			20.6	С	
		EB	#805	1.19	132.1	F	#878	1.26	144.3	F	#878	1.26	144.3	F	
Spicewood Springs Road & Loop 1	Signalized	WB	m499	0.8	11.1	В	m543	0.85	12.2	В	m543	0.85	12.2	В	
SBFR	Signalized	SB	#642	1.18	101.3	F	#642	1.18	83.5	F	#642	1.18	83.5	F	
		INT			79.3	E			78.1	E			78.1	E	
Spicewood Springs		EB	m182	0.83	7.9	Α	m182	0.88	8.3	Α	m182	0.88	8.3	Α	
Road & Loop 1	Signalized	WB	610	0.78	36.3	D	647	0.81	37.6	D	647	0.81	37.6	D	
NBFR		NB INT	#527	1.49	194 58.6	F E	#628	1.57	225.4 66.8	F E	#628	1.57	225.4 66.8	F E	
		WB	26	0.26	12.9	В	49	0.41	15.4	В	49	0.41	15.4	В	
Executive Center	TWSC	NB	0	0.23	0	A	0	0.41	0	A	0	0.23	0	A	
Drive & Hart Lane		SB	1	0.02	0.8	A	5	0.07	2.4	A	5	0.07	2.4	A	
		EB	85	0.57	29	С	5.7	0.719	27.9	С	5.7	0.719	27.9	С	
Executive Center		WB	39	0.35	15.3	В	6.4	0.751	29.5	С	6.4	0.751	29.5	С	
Drive & Wood	TWSC/ AWSC	NB	1	0.01	0.3	Α	3.7	0.584	20.2	С	3.7	0.584	20.2	С	
Hollow Drive		SB	1	0.02	0.9	Α	2.7	0.495	17.6	В	2.7	0.495	17.6	В	
		INT		0 ==	25.1			F5	22.5	С			23.8	С	
Executive Center Dr. & Loop 1 SBFR	TWSC	EB	87	0.58	28.4	C	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE	
DI. & LOOP 1 3B1 K	<u> </u>	SB NB	3.8	0.52 0.588	16.7	A B	FREE 4.2	0.617	17.7	FREE	FREE 4.2	0.617	FREE 17.7	FREE B	
		EB	0.9	0.334	11.2	В	0.9	0.017	11.4	В	0.9	0.239	11.4	В	
Greystone Drive &	AWSC	WB	2.3	0.454	14	В	2.5	0.476	14.6	В	2.5	0.476	14.6	В	
Hart Lane		SB	1.5	0.349	12.1	В	1.7	0.37	12.7	В	1.7	0.37	12.7	В	
		INT			14.1	В			14.3	В			14.8	В	
		NB	3.2	0.546	15.6	В	4.9	0.666	20.6	С	4.9	0.666	20.6	С	
Greystone Drive &		EB	0.9	0.227	11.4	В	1	0.259	12.5	В	1	0.259	12.5	В	
Wood Hollow Drive	AWSC	WB	4.3	0.629	18.6	В	5	0.675	21.1	С	5	0.675	21.1	С	
		SB	1.2	0.297	12.4	В	1.7	0.372	13.8	В	1.7	0.372	13.8	В	
Ones and an a Dais as 0		INT EB	140	0.76	15.5 49.7	B D	134	0.72	16 36.7	B D	134	0.72	18.4 36.7	B D	
Greystone Drive & Loop 1 SBFR	TWSC	SB	0	0.76	0	A	0	0.72	0	A	0	0.72	0	A	
2000 1 02.11		EB	231	0.35	20.2	C	211	0.43	16.1	В	211	0.43	16.1	В	
Faw West		WB	68	0.36	7	A	263	0.35	27.8	С	263	0.35	27.8	С	
Boulevard & Hart	Signalized	NB	193	0.76	60.4	E	182	0.69	54.5	D	182	0.69	54.5	D	
Lane		SB	185	0.75	61.3	E	210	0.73	55	D	210	0.73	55	D	
		INT			27.1	С			32.5	С			32.5	С	
		EB	199	0.5	16.9	В	446	0.56	35.1	D	446	0.56	35.1	D	
Faw West	G: 11 1	WB	m184	0.9	32.4	C	344	0.76	38.3	D	344	0.76	38.3	D	
Boulevard & Wood Hollow Drive	Signalized	NB	#328	0.83	70.6	E	246	0.8	51.5	D	246	0.8	51.5	D	
51170		SB INT	216	0.78	67.4 39	E	227	0.79	67.5 43.2	E	227	0.79	67.5 43.2	E	
		EB	597	0.75	20.4	С	654	0.77	22.2	С	654	0.77	22.2	С	
Faw West	<u> </u>	WB	17	0.73	3.7	A	17	0.77	3.5	A	17	0.29	3.5	A	
Boulevard & Loop 1 SBFR	Signalized	SB	#1067	1.61	211.1	F	#570	1.02	40.6	D	#570	1.02	40.6	D	
		INT			107.3	F			28.6	С			28.6	С	
Faw West Blvd. &		EB	m#891	1	44.3	D	m#924	1.05	56.9	E	m#924	1.05	56.9	E	
Loop 1 NBFR	Signalized	NB	195	0.32	25.7	С	209	0.34	26	С	209	0.34	26	С	
,		INT		_	40.5	D		-	50.5	D		_	50.5	D	
		EB	#398	0.94	68.7	E	#398	0.94	68.7	E	#398	0.94	68.7	E	
Steck Avenue & Loop 1 SBFR	Signalized	WB	8	0.34	0.7	A F	8	0.34	0.7	A F	8 #1 064	0.34	0.7	A F	
200p 1 0D1 IX		SB INT	#1049	1.45	250.5 162.3	F	#1064	1.47	258.7 167.8	F	#1004	1.47	258.7 167.8	F	
	<u> </u>	EB	m376	1.05	27.5	C	m368	1.05	27.5	C	m368	1.05	27.5	C	
Steck Avenue &		WB	#577	1.01	69.8	E	#577	1.01	69.8	E	#577	1.01	69.8	E	
Loop 1 NBFR	Signalized	NB	#1595	2.18	523.1	F	#1595	2.18	523.1	F	#1595	2.18	523.1	F	
		INT			198.8	F			198.8	F			198.8	F	
Site Driveways (Stop-Controlled App	proach Only)													
	ection	Approach													
	1 (Phase I)	NB					55	0.43	14	В	55	0.43	14	В	
Driveway 2		NB					12	0.14	10.1	В	12	0.14	10.1	В	
	3 (Phase II) 4 (Phase II)	NB NB					3 6	0.04 0.07	9.6 9.9	Α	3 6	0.04	9.6 9.9	Α	
Driveway 4	τ (ι ιια ο υ ΙΙ <i>)</i>	IND					0	0.07	9.9	А	O	0.07	<i>ਬ</i> .ਬ	Α	

A. TRAFFIC VOLUME CONDITIONS

TRIP GENERATION

The 2022 Build Scenario assumes the completion of Phases I, II, and III of the Austin Oaks development. *Table 20* summarizes the Daily, and Weekday AM and PM peak hour trip generation the 2022 Build Scenario based on ITE methodology. 2022 Net New External Trips represent the comprehensive site traffic added to the adjacent roadway network after the anticipated completion of Phases I, II, and III.

AM Peak Hour Trips PM Peak Hour Trips ITE Code Daily Trips Land Use Amount Units In Out Total In Out Total Existing General Office Building 445.322 1,000 Sq Ft 710 4,086 556 76 632 98 479 577 Existing General Office Building (To Remain) 101.77 710 159 1,000 Sq Ft 1.332 171 23 194 33 192 Reduction in Existing Office Trips 2,754 385 53 438 65 320 385 Apartment 250 Dwelling Unit(s) 220 1,640 25 101 126 101 54 155 100 Room(s) 310 818 31 22 53 31 29 60 General Office Building 422.000 1,000 Sq Ft 710 3,921 533 72 605 94 457 551 Medical-Dental Office Building 110.000 1,000 Sq Ft 720 4,283 208 55 263 228 317 Retail/High-Turnover (Sit-Down) Restaurant 46.700 1,000 Sq Ft 932 5,938 278 227 505 276 184 460 2022 Net New Trips 13,846 690 424 1,114 526 632 1,158 Internal Capture Trip Reduction (5%) 830 54 24 78 48 77 30 2022 Trips (at Site Driveways) 15,770 1.021 453 1,474 561 904 1,466

2022 Net New External Trips

Table 20 – 2022 Build Trip Generation

TRIP DISTRIBUTION AND ASSIGNMENT

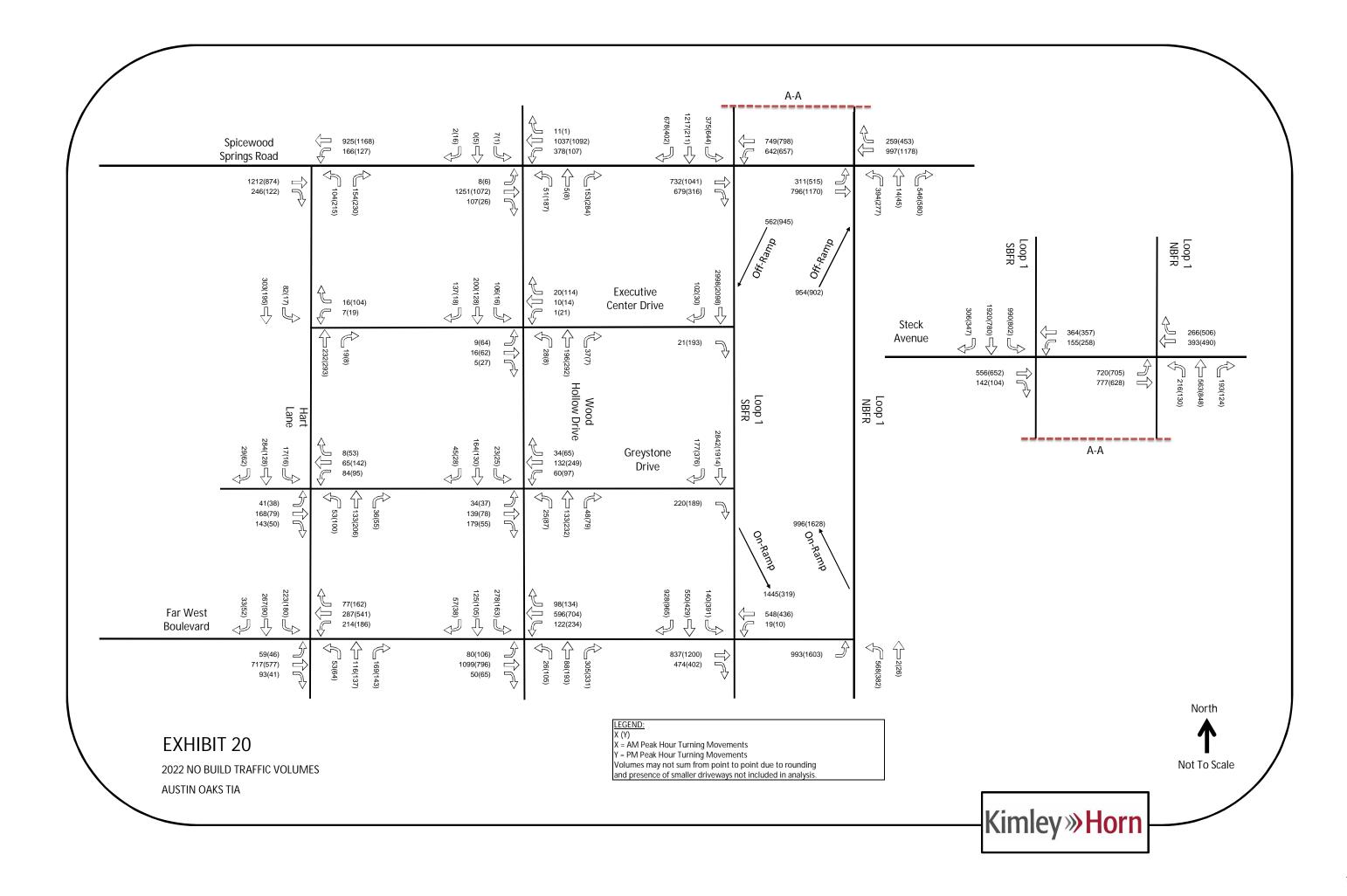
The 2022 Trip Assignment Volumes, shown as *Exhibit 21*, are the product of the Global Trip Distribution Percentages and 2022 Net New External Trips, as shown in *Table 20*. The 2022 Local Trip Distribution Percentages, as shown as *Exhibit 22*, were developed based on the size and location of the Austin Oaks development expected to be completed by year 2022.

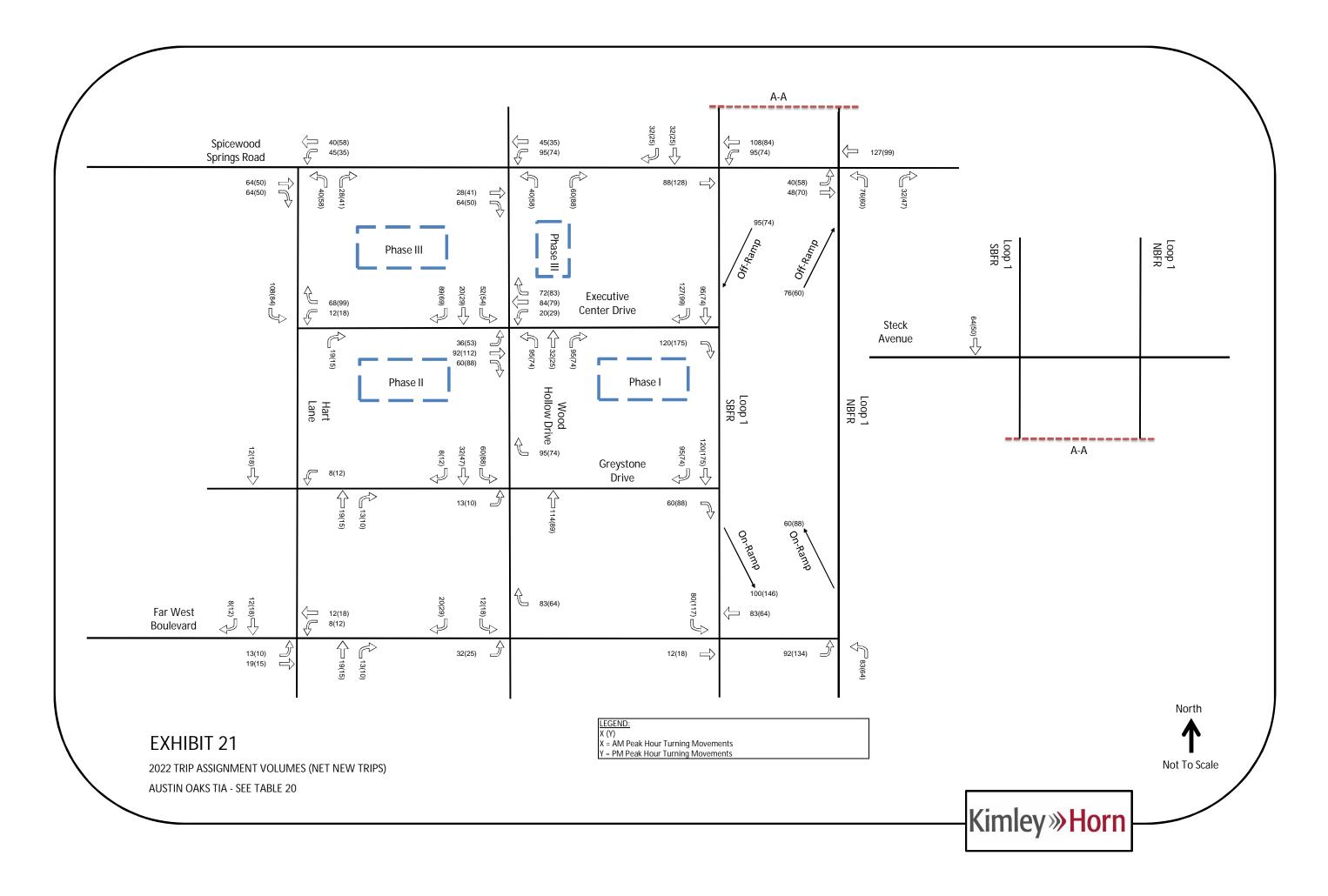
13,016

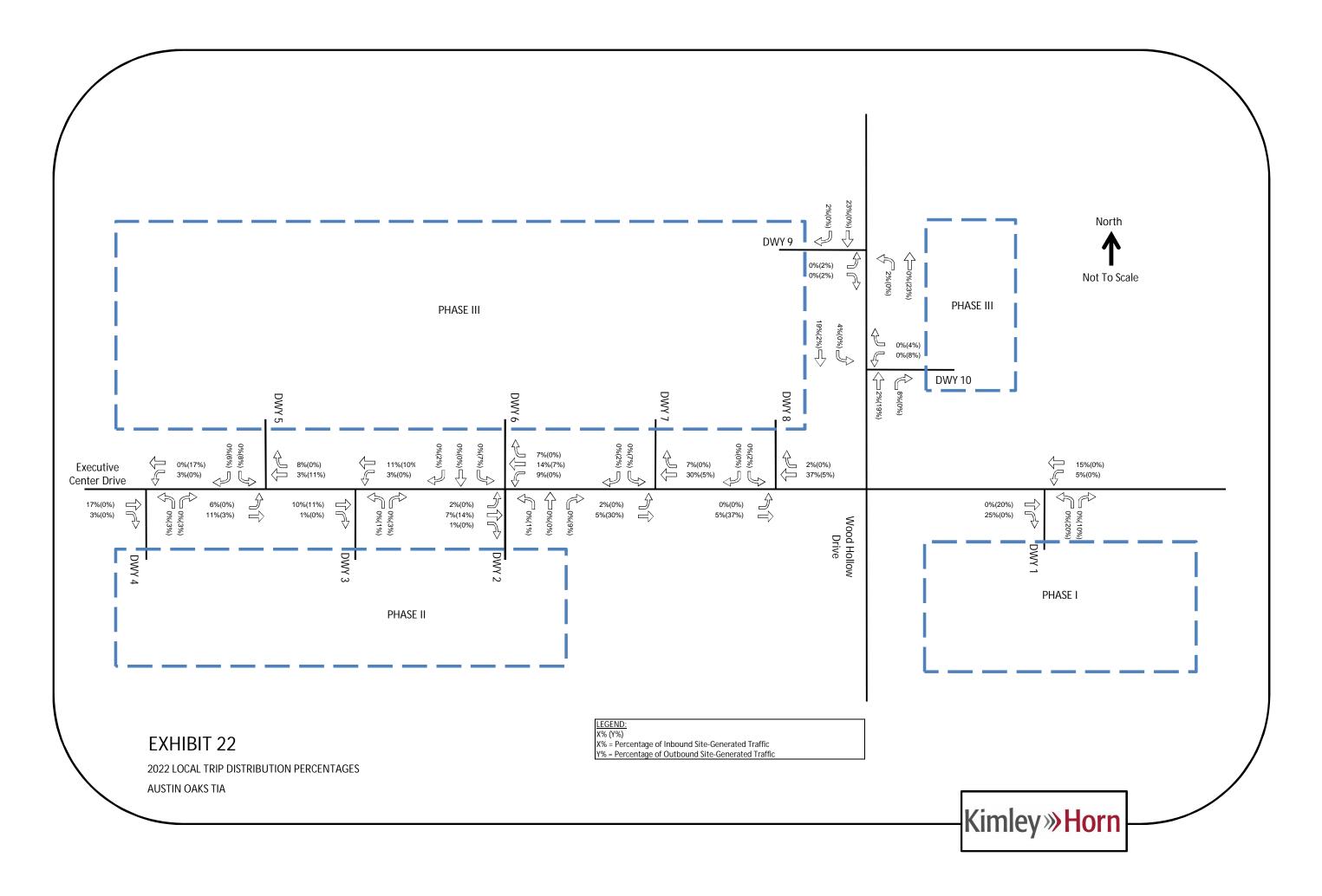
636

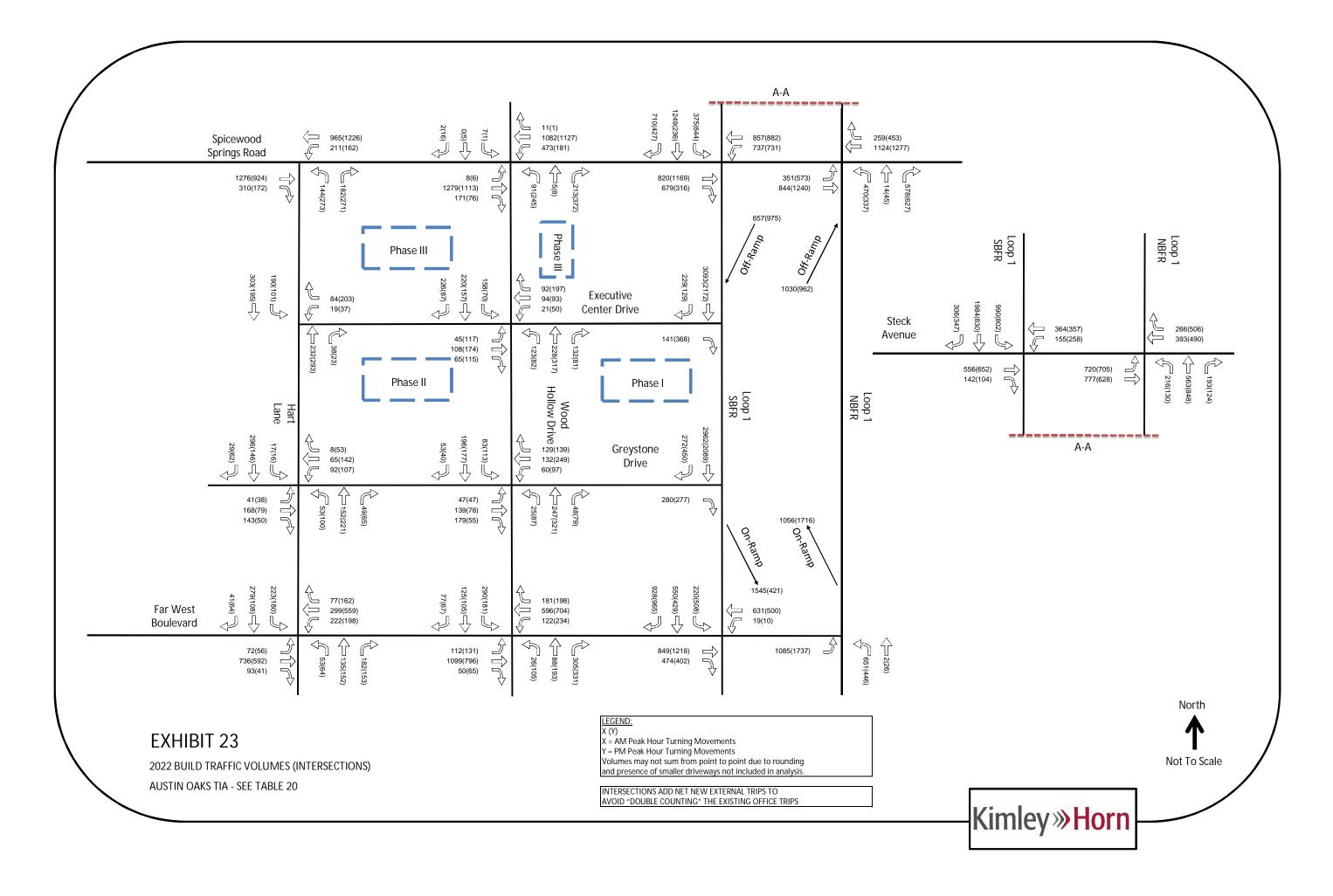
400

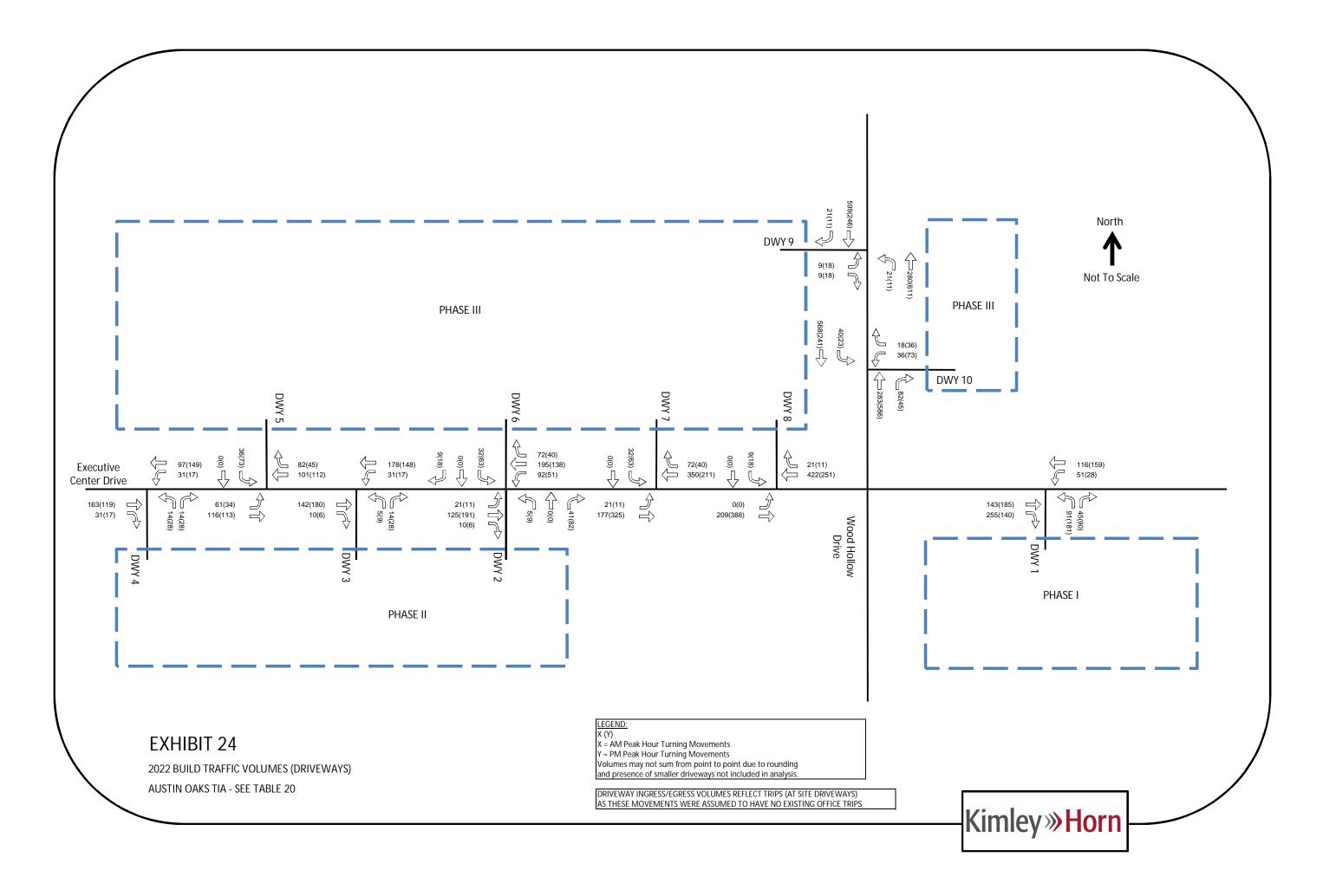
1,036

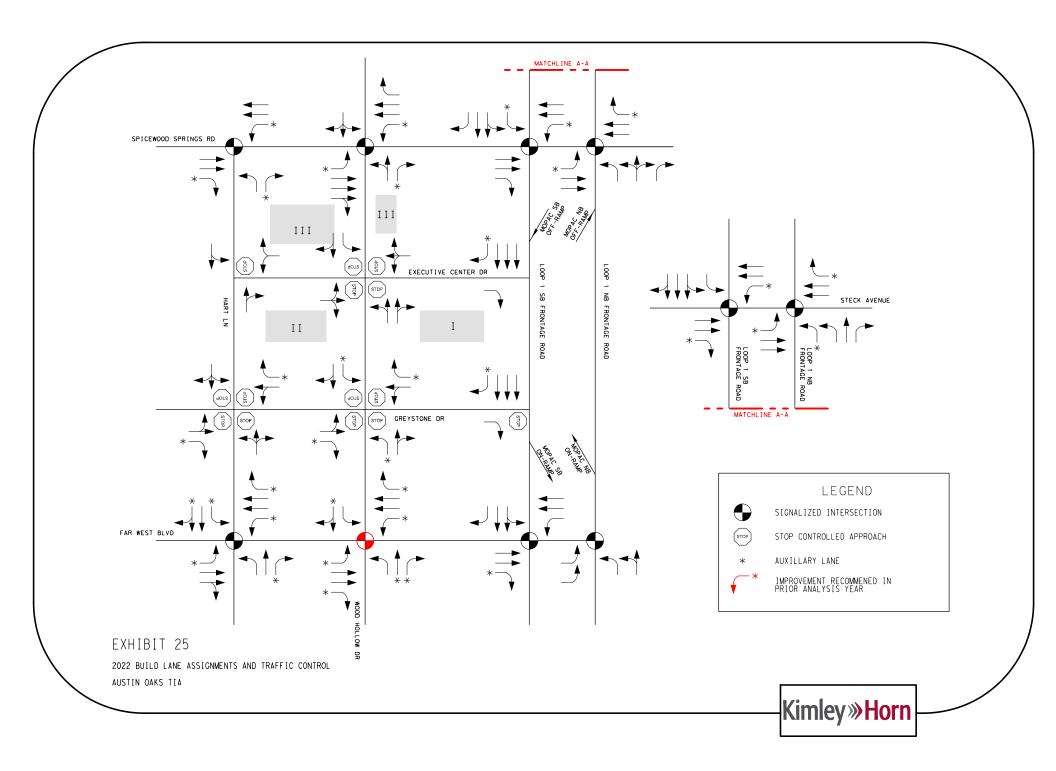

496


584


1,081


TOTAL TRAFFIC VOLUMES


For all existing intersections, the assignment volumes were added to 2022 No Build Volumes (*Exhibit 20*) to determine the 2022 Build Traffic Volumes. Existing office trips were not assumed at site driveways. Therefore, the in/out movements to/from site driveways are the product of the Local Trip Distribution Percentages and the Trips (at Site Driveways) shown in *Table 20*. The weekday AM and PM peak hour traffic volumes used for the analysis of the 2022 Build and Mitigated Scenarios are shown in *Exhibit 23* and *Exhibit 24* for network intersections and site driveways, respectively.



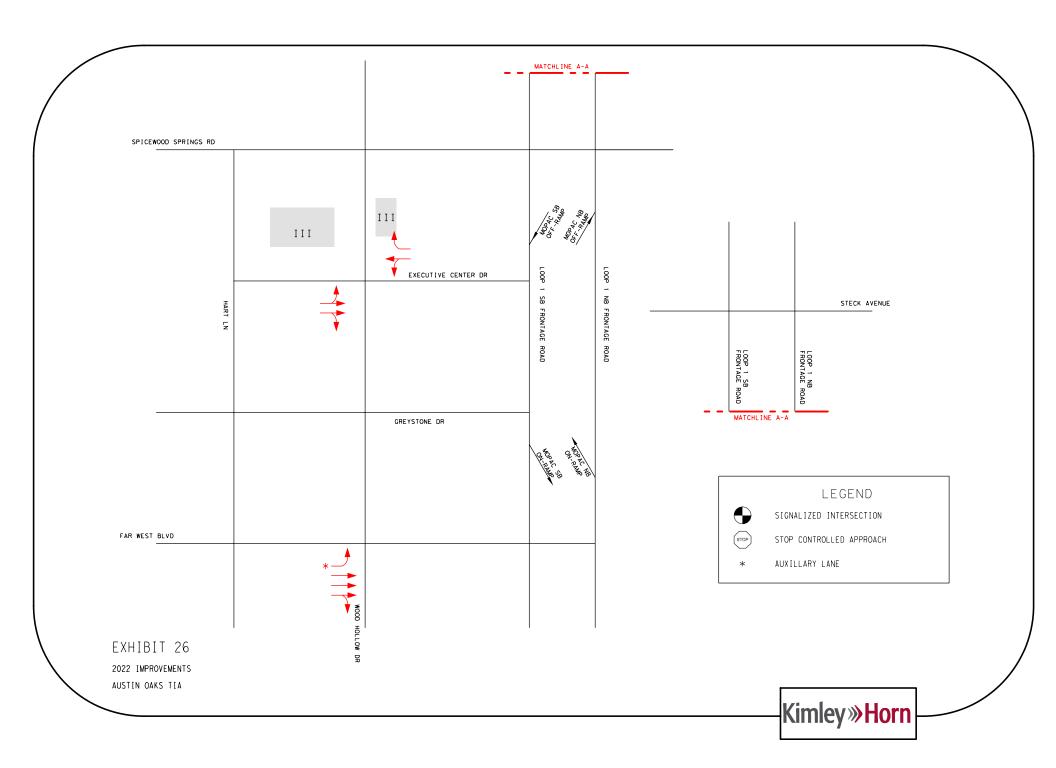
B. 2022 BUILD ANALYSIS RESULTS

The analysis was performed using the 2022 Build Lane Assignments and Traffic Control, shown as *Exhibit 25*, which incorporates improvements recommended in analysis years prior to 2022. *Table 21* and *Table 22* summarize the intersection operations for the 2022 Build Scenario AM and PM peak hours, respectively. Synchro reports, including signal timing plans, for all 2022 analyses are provided as *Appendix P*. Noteworthy traffic operations at intersections are as follows:

- <u>Executive Center Drive & Wood Hollow Drive</u>. The eastbound and westbound approaches of Executive Center Drive at Wood Hollow Drive experience an unacceptable LOS due to the high volume expected at these approaches.
- Far West Boulevard & Wood Hollow Drive. The intersection of Wood Hollow Drive and Far West Boulevard is nearing capacity and an unacceptable LOS is reported at multiple approaches.
- <u>Spicewood Springs Road & Loop 1</u>. Similar to existing conditions the intersection of Spicewood Springs Road and Loop 1 continues to operate at an unacceptable LOS. (see Existing and Future Regional Impacts)
- <u>Greystone Drive & Loop 1.</u> Similar to existing conditions the eastbound approach of Greystone
 Drive at Loop 1 SBFR continues to operate at an unacceptable LOS. (see Existing and Future
 Regional Impacts)
- <u>Far West Boulevard & Loop 1</u>. Similar to existing conditions the intersection of Far West Boulevard and Loop 1 continues to operate at an unacceptable LOS. (see Existing and Future Regional Impacts)
- <u>Steck Avenue & Loop 1</u>. Similar to existing conditions the intersection of Steck Avenue and Loop 1 continues to operate at an unacceptable LOS. (see Existing and Future Regional Impacts)

C. 2022 IMPROVEMENTS

Based on the results of the 2022 Build analysis, the following improvement (shown in *Exhibit 26*) is recommended:


- Executive Center Drive & Wood Hollow Drive (1). Restripe the eastbound approach of Executive Center Drive at Wood Hollow Drive to include a shared thru-left and a shared thru-right. The shared thru-right lanes will also be marked as shared bike lanes. This will require the east-leg of the intersection to be restriped to provide two receiving lanes. Restripe the westbound approach of Executive Center Drive at Wood Hollow Drive to include an exclusive right-turn lane and a shared thru-left. The proposed cross-sections can be accomplished using existing pavement.
- <u>Far West Boulevard & Wood Hollow Drive (2)</u>. Restripe the eastbound approach of Far West Boulevard at Wood Hollow Drive. The outside lane of the eastbound approach is currently striped as an exclusive right-turn lane and there are three eastbound receiving lanes. To prevent weaving downstream of Wood Hollow Drive the City should consider restriping the outside lane of Far West Boulevard as a shared thru-right until Loop 1 SBFR.

An exhibit showing the 2022 Improvement at a conceptual level is provided as *Appendix K*.

D. 2022 MITIGATED ANALYSIS RESULTS

The 2022 Mitigated analysis was performed using the 2022 Build Traffic Volumes and incorporates the 2022 Improvements enumerated above. *Table 21* and *Table 22* summarize the intersection operations for the 2022 Mitigated Scenario AM and PM peak hours, respectively. The 2022 improvements reduce delay such that all approaches in the study area, with the exception of intersections along Loop 1, operate at either an acceptable LOS or report delay less than the No Build scenario.

2022 INTERSECTION AM PEAK HOUR ANALYSIS RESULTS

Marriado Traffic Country Approach Process September Se	Required Study Area				2022 No E	Build Condi	tion		2022 Build	Condition		2022 Mitigated Condition				
Second Sympole 19			Approach	95% Queue	V/C	Delay	LOS	95% Queue	V/C	Delay	LOS				LOS	
March Marc			EB	0	0.37	0	A	512	0.71	24.4	С	512	0.71	24.4	С	
Mile Person Per	Spicewood Springs	TMSC/Signalized	WB	33		2.2		-		9.9	Α			9.9	А	
Excessed Springs Excess A year Excess A	Road & Hart Lane	TWSC/ Signalized		149	0.75	44.4	D	91	0.5			91	0.5		С	
Spensors Springs Sprin															В	
Separation Sep	0														C	
March Name	' '	Signalized		+				4	•			1			С	
Special Spring Sp	Hollow Drive	Ü		+				4				1			D	
Specimen of Springer Sput land Wilson Moral September Sput land September September Sput land September			INT			24.5	С			31.7	С			31.7	С	
Treatment Content	Spicewood Springs							-					-		F	
Section Content	Road & Loop 1	Signalized						1							D	
Spreaded Springs	SBFR			M400	1.34			M400	1.38		-	m400	1.38		F F	
Subservoor Stringer Novel 5 Superson Stringer Novel 5 Su				m45	0.45			m44	0.5			m44	0.5		A	
NBCR NSC #827 1.47 147 F #705 1.83 2255 1.25 1.27 F #7074 1.83 2255 1.25 1.27 F #7074 1.83 2.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25		Signalized	WB	514	0.86	42.9	D	#654	0.97	55.1	Е	#654	0.97	55.1	Е	
Execution Content TWISC NB 0 018 0 A 0 019 0 A 0 019 0 A 0 019 0 NB 0 018 0 A 0 019 0 A 0 019 0 A 0 019 0 NB 0 008 23 A 177 018 4.5 A 777 018 4.6 NB 0 008 23 A 177 018 4.5 A 777 018 4.6 NB 0 008 23 A 177 018 4.5 A 777 018 4.6 NB 0 008 23 A 177 018 4.5 A 777 018 4.6 NB 0 008 23 A 177 018 4.5 A 777 018 4.6 NB 0 008 23 A 177 018 4.5 A 777 018 1.6 NB 0 008 23 A 177 018 4.5 A 177 018 1.6 NB 0 008 23 A 177 018 4.5 A 177 018 1.6 NB 0 008 23 A 177 018 1.6 NB 0 008 23 A 177 018 1.6 NB 0 008 23 A 177 018 1.6 NB 0 008 27 A 187 1.7 NB 0 1 1.7 NB 0 1.7 NB 0 1 1.7 NB 0 1.7		Signalized		#627	1.47			#705	1.63		-	#704	1.63		F	
Description Content					2.25			25	0.05		-	0.5	2.25		F	
Done A Hord Future		TWSC				+		4				1			B A	
Fig. 11	Drive & Hart Lane	1000						4							A	
TWSC AWSC NE				_		1						1			В	
Motion Drive SR 8 0.00 2.7 A 4.35 1.02 64.3 D 13.7 1 53.5			WB	7	0.08	14.2	В	_	0.51	19.1	В	1.3	0.315	14.3	В	
Decoular Context		TWSC/ AWSC						-							С	
Face-Unifor-Combine	Hollow Drive			8	0.09	2.7	A	13.5	1.02			13.7	1		D	
Dr. A. Loop 1 Sterry Wild SB	Executive Center			3	0.03	10.5	R	FRFF	FRFF			FRFF	FRFF		C FREE	
NB 3.1 0.532 17.7 8 4.3 0.034 22.1 C 4.3 0.034 23.1 C 4.3 0.034 C 4.3		TWSC						-							FREE	
AWSC	<u> </u>							1							С	
Family F	Gravetana Driva 8		EB	3.1	0.537	16.3	В	3.4	0.565	17.8	В	3.4	0.565	17.8	В	
NRT		AWSC													В	
NB				6.5	0.751			8	0.813			8	0.813		С	
AWSC EB 1.6 0.381 12.3 B 2.4 0.47 16.5 B 2.4 0.47 16.5				1.8	0.379			5.6	0.715			5.6	0.715		C	
AWSC WB 2								4			-				В	
SE		AWSC	WB	+	0.414			_	0.492	16.5	В	2.6	0.492	16.5	В	
Greystrian Drive & Loop 1 SBFR TWSC EB 257 1.07 129.5 F 373 1.26 190.4 190.4 190.3 190.5 190.4 190.3 190.5 190	W Ood I Iollow Drive		SB	2.1	0.436	14.2	В	3.9	0.603	19.8	В	3.9	0.603	19.8	В	
Loop 1 SBFR IWSC															В	
EB		TWSC		+				1							F	
Signalized WB	LOOP 1 OBI IX					-		 							A C	
Boulevard & Hart Lane Signalized NB 214 0.85 66.3 E 196 0.73 51.7 D 196 0.73 51.7 SB 3344 0.94 71.8 E 262 0.84 54.5 D 262 0.84 54.5 D 262 0.84 54.5 SB 3344 0.94 71.8 E 262 0.84 54.5 D 262 0.84 54.5 SB 3344 0.94 71.8 E 262 0.84 54.5 D 262 0.84 54.5 SB 34.0 SB 31.3 D 40.3 D	Faw West														D	
Signalized Sig		Signalized		+		-		-{}			D				D	
EB m531 0.69 61.5 E 592 0.7 65.3 E 384 0.51 32.2	Lane		SB	#344	0.94	71.8	E	262	0.84	54.5	D	262	0.84	54.5	D	
Faw West Boulevard & Wood Hollow Drive Signalized Hollow Drive Signalized Hollow Drive Signalized Hollow Drive Hollow Drive Signalized Hollow Drive Hollow Drive Signalized Hollow Drive															D	
Boulevard & Wood Hollow Drive Signalized Hollow Drive Signalized NB #313 0.94 95.3 F #225 0.94 83.8 F #210 0.95 43.1 0.95 0.															С	
Hollow Drive		Signalized		+		+		1		1				1	D F	
Faw West Boulevard & Loop 1 Signalized EB m416 0.665 19.6 B m444 0.66 20.2 C m444 0.66 22.3 SB m13 0.46 1.9 A m14 0.53 6.1 A m14 0.53 A 24 0.54 5.7 A 24 0.54 4.0 3 A 24 0.54 5.7 A 4.0		0.ga00						1				1			D	
Faw West Boulevard & Loop 1 Signalized															D	
Boulevard & Loop 1 Signalized Signaliz	F . 14/		EB	m416	0.65	19.6	В	m444	0.66	20.2	С	m444	0.66	22.3	С	
SBFR		Signalized													Α	
EB				m220	1.09			m213	0.6			m213	0.6		В	
Faw West Blvd. & Loop 1 NBFR Signalized NB				14	0.46			24	0.54			24	0.54		B A	
Steck Avenue & Loop 1 SBFR Signalized EB		Signalized						-{}		1		1			D	
Steck Avenue & Loop 1 SBFR Signalized WB	Loop 1 NBFR														В	
Loop 1 SBFR								#388	0.99						E	
SB		Signalized						-							Α	
Steck Avenue & Loop 1 NBFR Signalized WB	Loop 1 SBFR			#1710	1.46			#1774	1.5			#1774	1.5		F	
Steck Avenue & Loop 1 NBFR Signalized WB				m126	0.60			m122	0.60			m122	0.60		F	
NB	Steck Avenue &							1							E	
Site Driveways (Stop-Controlled Approach Only)		Signalized						4				1			F	
Driveway 1 (Phase I)			INT			240.3	F				F			239.7	F	
Driveway 1 (Phase I) NB Driveway 2 (Phase II) NB 5 0.06 10 A 5 0.06 10 Driveway 6 (Phase III) SB 10 0.12 16 C 10 0.12 16 Driveway 3 (Phase II) NB 2 0.03 9.8 A 2 0.03 9.8 Driveway 4 (Phase III) NB 3 0.04 10.3 B 3 0.04 10.3 Driveway 5 (Phase III) SB 8 0.1 11 B 8 0.1 11 Driveway 7 (Phase III) SB 8 0.1 13.8 B 8 0.1 13.8 Driveway 8 (Phase III) SB 2 0.02 14.1 B 2 0.02 14.1 Driveway 9 (Phase III) EB 5 0.06 16.1 C 5 0.06 16.1	- ` `															
Driveway 2 (Phase II) NB Driveway 6 (Phase III) SB 10 0.12 16 C 10 0.12 16 Driveway 3 (Phase II) NB 2 0.03 9.8 A 2 0.03 9.8 Driveway 4 (Phase II) NB 3 0.04 10.3 B 3 0.04 10.3 Driveway 5 (Phase III) SB 8 0.1 11 B 8 0.1 11 Driveway 7 (Phase III) SB 8 0.1 13.8 B 8 0.1 13.8 Driveway 9 (Phase III) SB 2 0.02 14.1 B 2 0.02 14.1 Driveway 9 (Phase III) EB 5 0.06 16.1 C 5 0.06 16.1									-				-			
Driveway 6 (Phase III) SB Driveway 3 (Phase II) NB Driveway 4 (Phase II) NB Driveway 5 (Phase III) NB Briveway 7 (Phase III) SB Briveway 7 (Phase III) SB Briveway 8 (Phase III) SB Briveway 9 (Phase III) SB															В	
Driveway 3 (Phase II) NB Driveway 4 (Phase II) NB 3 0.04 10.3 B 3 0.04 10.3 4 (Phase III) SB 8 0.1 11 B 8 0.1 11 5 (Phase III) SB 8 0.1 13.8 B 8 0.1 13.8 8 0.1 13.8 B 8 0.1 13.8 9.8 0.1 13.8 B 8 0.1 13.8 9.8 0.1 14.1 B 2 0.02 14.1 10 0.02 14.1 B 2 0.02 14.1 10 0.06 16.1 C 5 0.06 16.1		, ,													A C	
Driveway 4 (Phase II) NB Driveway 5 (Phase III) SB B Driveway 7 (Phase III) SB B Driveway 7 (Phase III) SB B Driveway 8 (Phase III) SB Driveway 9 (Phase III) SB Driveway 9 (Phase III) EB Driveway 9 (Phase III) EB	-														A	
Driveway 5 (Phase III) SB 8 0.1 11 B 8 0.1 11 Driveway 7 (Phase III) SB 8 0.1 13.8 B 8 0.1 13.8 Driveway 8 (Phase III) SB 2 0.02 14.1 B 2 0.02 14.1 Driveway 9 (Phase III) EB 5 0.06 16.1 C 5 0.06 16.1														1	В	
Driveway 8 (Phase III) SB Driveway 9 (Phase III) EB 2 0.02 14.1 B 2 0.02 14.1 5 0.06 16.1 C 5 0.06 16.1	Driveway 5	(Phase III)								1					В	
Driveway 9 (Phase III) EB 5 0.06 16.1 C 5 0.06 16.1	•	` '													В	
	•	,												1	В	
20 0.22 21.9 C 20 0.22 21.9	·	` ,													С	
	וועeway 10	(Filase III)	MR					20	0.22	21.9	l C	20	0.22	21.9	С	

2022 INTERSECTION PM PEAK HOUR ANALYSIS RESULTS

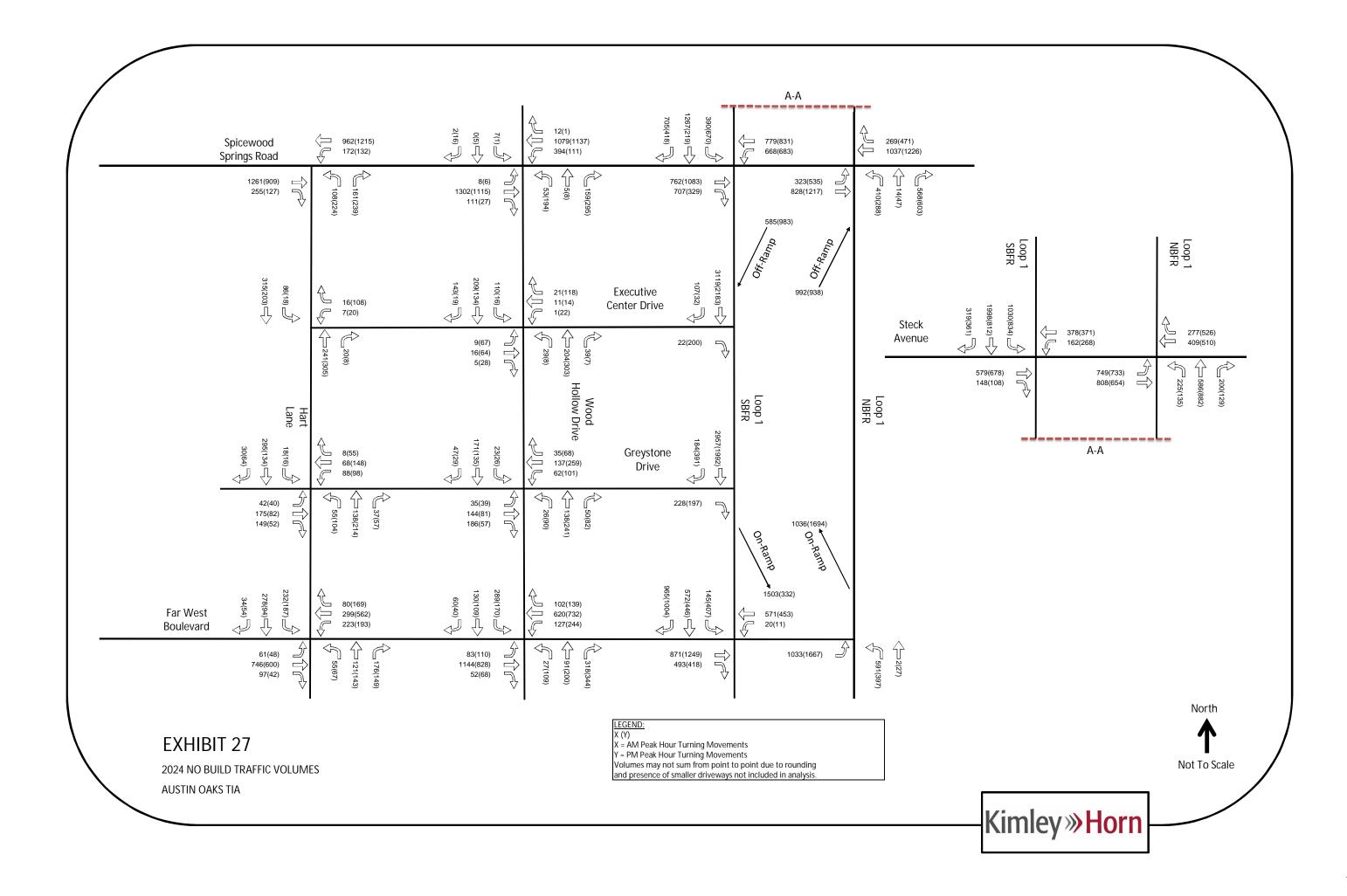
De	animad Ctudy Area		2022 No Bui	ld Canditia	-		2022 Mitigated Condition							
Intersection	quired Study Area Traffic Control	Approach	95% Queue	V/C	Delay	LOS	95% Queue	2022 Build V/C	Delay	LOS	95% Queue	V/C	Delay	LOS
intersection	Trame Control	EB	0	0.29	0	A	440	0.59	27.5	C	440	0.59	27.5	C
Spicewood Springs		WB	19	0.23	1.1	A	278	0.47	11.1	В	278	0.47	11.1	В
Road & Hart Lane	TWSC/ Signalized	NB	706	1.54	288.1	F	196	0.75	35.8	D	196	0.75	35.8	D
		INT	100		20077	•	100	0.70	21.5	С	100	0.7 0	21.5	С
		EB	236	0.38	12.3	В	468	0.56	16.5	В	468	0.56	16.5	В
Spicewood Springs		WB	342	0.52	11	В	410	0.74	23.1	С	410	0.74	23.1	С
Road & Wood	Signalized	NB	#347	0.86	70.6	E	345	0.68	40.7	D	345	0.68	40.7	D
Hollow Drive	J	SB	32	0.03	49.1	D	27	0.02	35	С	27	0.02	35	С
		INT			22	С			24.2	С			24.2	С
		EB	#853	1.24	146.4	F	#1002	1.39	186.4	F	#1002	1.39	186.4	F
Spicewood Springs	Cinnalinad	WB	m520	0.84	11.6	В	m599	0.93	13	В	m599	0.93	13	В
Road & Loop 1 SBFR	Signalized	SB	#674	1.23	112	F	#674	1.23	94.4	F	#674	1.23	94.4	F
02		INT			87.6	F			95.6	F			95.6	F
Online and One do an		EB	m181	0.87	8.2	Α	m178	0.96	10	Α	m178	0.96	10	Α
Spicewood Springs Road & Loop 1	Signalized	WB	647	0.81	37.6	D	730	0.88	41.1	D	730	0.88	41.1	D
NBFR	Olgridii20d	NB	#628	1.57	213.6	F	#701	1.75	280.8	F	#701	1.75	280.8	F
		INT			63.5	Ε			81.8	F			81.8	F
Executive Center		WB	28	0.28	13.4	В	101	0.61	22	С	101	0.61	22	С
Drive & Hart Lane	TWSC	NB	0	0.24	0	Α	0	0.25	0	Α	0	0.25	0	Α
		SB	1	0.02	0.8	Α	10	0.12	3.7	Α	10	0.12	3.7	Α
		EB	100	0.63	33.5	С	12.2	1.332	76.2	E	5.6	0.728	32	С
Executive Center	TM00/11/22	WB	43	0.38	16	В	12.3	1.085	75.3	E	4.4	0.644	25.3	С
Drive & Wood Hollow Drive	TWSC/ AWSC	NB	1	0.01	0.3	A	7.9	0.838	44.2	D	7.7	0.832	42.7	D
I IOIIOW DIIVE		SB	1	0.02	1	Α	7.8	0.827	39.1	D	7.8	0.84	39.9	D
F	<u> </u>	INT	400	0.00	00.5		FDFF		58.5	E	FDFF	- CD	35.5	D
Executive Center Dr. & Loop 1 SBFR	TWSC	EB	102	0.63	32.5	C	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE
DI. & LOOP I SBEK		SB	0	0.54	0	A	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE
		NB	4.3	0.628	18.2	В	5.4	0.691	21.6	С	5.4	0.691	21.6	С
Greystone Drive &	AWSC	EB	2.6	0.248 0.486	11.5 14.8	B B	3	0.258	12 16.3	B B	3	0.258 0.529	12 16.3	B B
Hart Lane	AVVSC	WB SB	1.7	0.486	14.8	В	2.1	0.529 0.42	13.9	В	2.1	0.529		В
		INT	1.7	0.371	15.1	В	2.1	0.42	17	В	2.1	0.42	13.9 17	В
		NB	3.7	0.581	16.9	В	8.5	0.847	34.9	С	8.5	0.847	34.9	С
		EB	0.9	0.361	11.8	В	1.3	0.308	14.3	В	1.3	0.308	14.3	В
Greystone Drive &	AWSC	WB	5	0.242	20.8	С	6.6	0.769	27	С	6.6	0.769	27	С
Wood Hollow Drive	AWOO	SB	1.4	0.319	12.9	В	2.6	0.482	16.7	В	2.6	0.482	16.7	В
		INT	1.4	0.010	16.9	В	2.0	0.402	25.8	С	2.0	0.402	25.8	С
Greystone Drive &		EB	167	0.83	62.2	E	259	0.97	79.2	E	259	0.97	79.2	E
Loop 1 SBFR	TWSC	SB	0	0.52	0	A	0	0.47	0	A	0	0.47	0	A
'		EB	241	0.37	20.9	C	229	0.34	17	В	229	0.34	17	В
Faw West		WB	71	0.39	7.2	A	276	0.39	29.2	С	271	0.39	30.6	С
Boulevard & Hart	Signalized	NB	200	0.77	60.7	E	196	0.72	54.5	D	196	0.72	54.5	D
Lane	3 3 3	SB	193	0.77	61.9	E	216	0.74	54.3	D	216	0.74	54.3	D
		INT			27.5	С			33.4	С			34	С
		EB	224	0.53	17.3	В	465	0.6	37.2	D	311	0.44	33.9	С
Faw West		WB	m185	1	36.9	D	362	0.82	43.8	D	353	0.75	43.6	D
Boulevard & Wood	Signalized	NB	#346	0.87	74.8	E	265	0.81	51.9	D	256	0.81	50.6	D
Hollow Drive		SB	225	0.79	67.9	E	246	0.82	69.3	E	238	0.83	69.7	Ε
		INT			41.7	D			46.2	D			44.9	D
		EB	m640	0.79	21.6	С	#764	0.85	25.9	С	#753	0.85	26.2	С
Faw West Boulevard & Loop 1	Signalized	WB	17	0.28	3.7	Α	17	0.32	3.3	Α	17	0.32	3.3	Α
SBFR	Signalized	SB	#1156	1.73	243	F	#666	1.20dl	61.3	E	#666	1.2dl	61.3	Ε
		INT			122.6	F			39.8	D			39.9	D
Faw West Blvd. &		EB	m#940	1.05	56.1	Ε	m#1000	1.13	88.9	F	m#1001	1.13	88.9	F
Loop 1 NBFR	Signalized	NB	203	0.33	25.9	С	235	0.39	26.6	С	235	0.39	26.6	C
	<u> </u>	INT			49.9	D			75.5	E			75.6	E
		EB	#422	0.98	75.6	E	#422	0.98	75.6	E	#422	0.98	75.6	E
Steck Avenue &	Signalized	WB	8	0.35	0.8	A	8	0.35	8.0	A	8	0.35	8.0	A
Loop 1 SBFR		SB	#1098	1.51	276.1	F	#1134	1.55	292.6	F	#1134	1.55	292.6	F
		INT	070	4.00	178.9	F	0-4	4.00	190.1	F	0.7.4	4.00	190.1	F
		EB	m376	1.09	36.5	D	m351	1.09	36.5	D	m351	1.09	36.5	D
Charle Assess 0	G: " ·		#618	1.06	77.6	E	#618	1.06	77.6	Ε	#618	1.06	77.6	E F
Steck Avenue &	Signalized	WB	"1000			_	"4000	~ ~ ~						
Steck Avenue & Loop 1 NBFR	Signalized	NB	#1669	2.27	558.9	F	#1669	2.27	558.9	F	#1669	2.27	558.9	
Loop 1 NBFR		NB INT	#1669	2.27	558.9 216.3	F F	#1669	2.27	558.9 216.3	F	#1669	2.27	558.9 216.3	F
Loop 1 NBFR Site Driveways (\$	Stop-Controlled App	NB INT proach Only)	#1669	2.27			#1669	2.27			#1669	2.27		
Loop 1 NBFR Site Driveways (\$ Interse	Stop-Controlled Appetion	NB INT proach Only) Approach	#1669	2.27					216.3	F			216.3	F
Site Driveways (Site Driveways 1	Stop-Controlled Appection 1 (Phase I)	NB INT proach Only) Approach	#1669	2.27			73	0.51	216.3 17.8	F C	73	0.51	216.3 17.8	F C
Site Driveways (\$\frac{1}{2} \text{Interse}{2} \text{Driveway 1} \text{Driveway 2}	Stop-Controlled Appetion 1 (Phase I) 2 (Phase II)	NB INT proach Only) Approach NB NB	#1669	2.27			73 11	0.51 0.13	216.3 17.8 10.5	F C B	73 11	0.51 0.13	216.3 17.8 10.5	F C B
Site Driveways (\$\frac{1}{2}\text{Interse}\$ Driveway 1 Driveway 2 Driveway 6	Stop-Controlled Appetion 1 (Phase I) 2 (Phase II) 5 (Phase III)	NB INT Proach Only) Approach NB NB NB SB	#1669	2.27			73 11 20	0.51 0.13 0.22	17.8 10.5 16.3	C B C	73 11 20	0.51 0.13 0.22	17.8 10.5 16.3	C B C
Site Driveways (3 Interse Driveway 1 Driveway 2 Driveway 6 Driveway 3	Stop-Controlled Appection 1 (Phase I) 2 (Phase III) 6 (Phase III) 8 (Phase III)	NB INT Droach Only) Approach NB NB SB NB	#1669	2.27			73 11 20 4	0.51 0.13 0.22 0.05	17.8 10.5 16.3 10	C B C A	73 11 20 4	0.51 0.13 0.22 0.05	17.8 10.5 16.3 10	Г С В С А
Site Driveways (\$\frac{\text{Site Driveways}}{\text{Driveway}} 1 Driveway 2 Driveway 3 Driveway 4	Stop-Controlled Appection 1 (Phase I) 2 (Phase II) 6 (Phase III) 3 (Phase III) 4 (Phase II)	NB INT Proach Only) Approach NB NB SB NB NB NB NB	#1669	2.27			73 11 20 4 7	0.51 0.13 0.22 0.05 0.08	17.8 10.5 16.3 10 10.2	Г С В С А В	73 11 20 4 7	0.51 0.13 0.22 0.05 0.08	17.8 10.5 16.3 10 10.2	Г С В С А В
Site Driveways (\$\frac{1}{2}\text{Interse}\$ Driveway 1 Driveway 2 Driveway 6 Driveway 3 Driveway 4 Driveway 5	Stop-Controlled Appection 1 (Phase I) 2 (Phase II) 5 (Phase III) 4 (Phase II) 5 (Phase III)	NB INT Proach Only) Approach NB NB SB NB NB NB SB NB SB NB	#1669	2.27			73 11 20 4 7 17	0.51 0.13 0.22 0.05 0.08 0.19	17.8 10.5 16.3 10 10.2 11.1	F	73 11 20 4 7 17	0.51 0.13 0.22 0.05 0.08 0.19	17.8 10.5 16.3 10 10.2 11.1	F
Site Driveways (\$ Interse Driveway 1 Driveway 2 Driveway 6 Driveway 3 Driveway 4 Driveway 5 Driveway 7	Stop-Controlled Applection 1 (Phase I) 2 (Phase III) 3 (Phase III) 4 (Phase III) 6 (Phase III) 7 (Phase III)	NB INT Proach Only) Approach NB NB SB NB NB SB SB SB	#1669	2.27			73 11 20 4 7 17 16	0.51 0.13 0.22 0.05 0.08 0.19 0.18	17.8 10.5 16.3 10 10.2 11.1 13.9	Г С В С А В В В В	73 11 20 4 7 17 16	0.51 0.13 0.22 0.05 0.08 0.19 0.18	17.8 10.5 16.3 10 10.2 11.1 13.9	F
Site Driveways (\$\frac{\text{Interse}}{\text{Interse}}\$ Driveway 2 Driveway 6 Driveway 3 Driveway 4 Driveway 5 Driveway 7 Driveway 8	Stop-Controlled Appection 1 (Phase I) 2 (Phase III) 6 (Phase III) 4 (Phase III) 6 (Phase III) 7 (Phase III) 8 (Phase IIII) 9 (Phase IIII)	NB INT Proach Only) Approach NB NB SB NB NB SB SB SB SB	#1669	2.27			73 11 20 4 7 17 16 4	0.51 0.13 0.22 0.05 0.08 0.19 0.18 0.05	17.8 10.5 16.3 10 10.2 11.1 13.9 14.3	F	73 11 20 4 7 17 16 4	0.51 0.13 0.22 0.05 0.08 0.19 0.18 0.05	17.8 10.5 16.3 10 10.2 11.1 13.9 14.3	F
Site Driveways (\$\frac{\text{Site Driveways}}{\text{Interset}}\$ Driveway 1 Driveway 2 Driveway 3 Driveway 4 Driveway 5 Driveway 7 Driveway 8 Driveway 9	Stop-Controlled Applection 1 (Phase I) 2 (Phase III) 3 (Phase III) 4 (Phase III) 6 (Phase III) 7 (Phase III)	NB INT Proach Only) Approach NB NB SB NB NB SB SB SB	#1669	2.27			73 11 20 4 7 17 16	0.51 0.13 0.22 0.05 0.08 0.19 0.18	17.8 10.5 16.3 10 10.2 11.1 13.9	Г С В С А В В В В	73 11 20 4 7 17 16	0.51 0.13 0.22 0.05 0.08 0.19 0.18	17.8 10.5 16.3 10 10.2 11.1 13.9	F

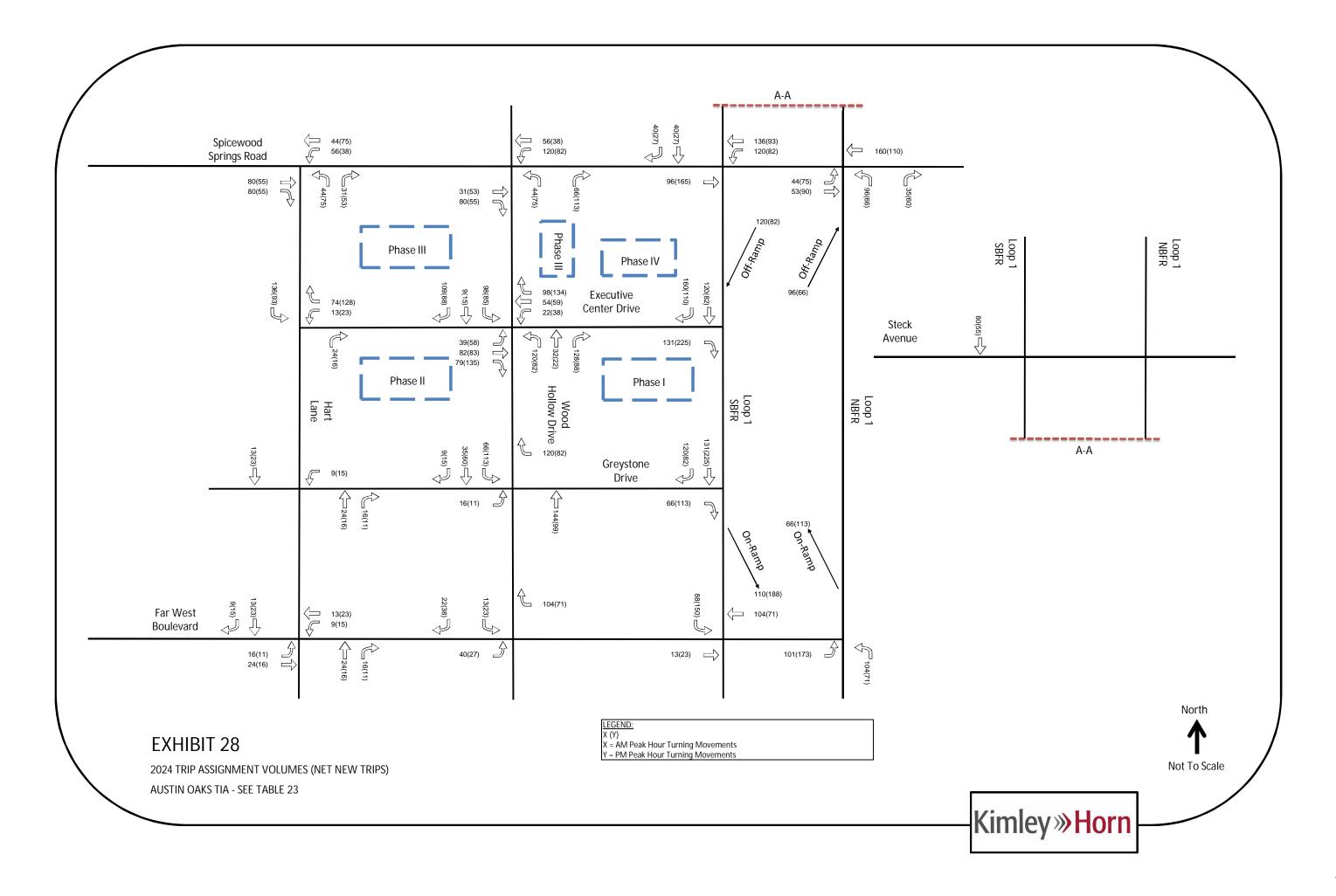
A. TRAFFIC VOLUME CONDITIONS

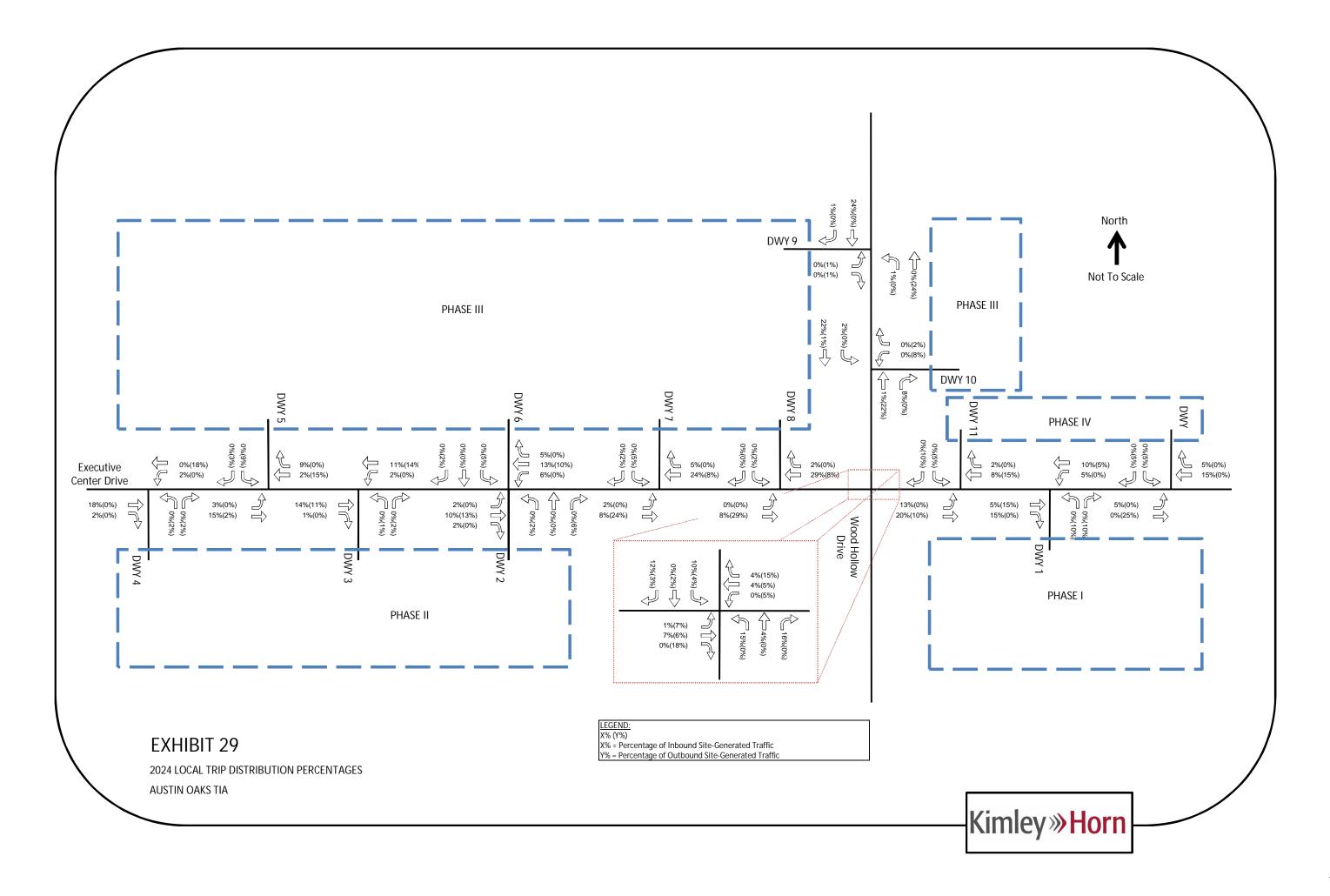
TRIP GENERATION

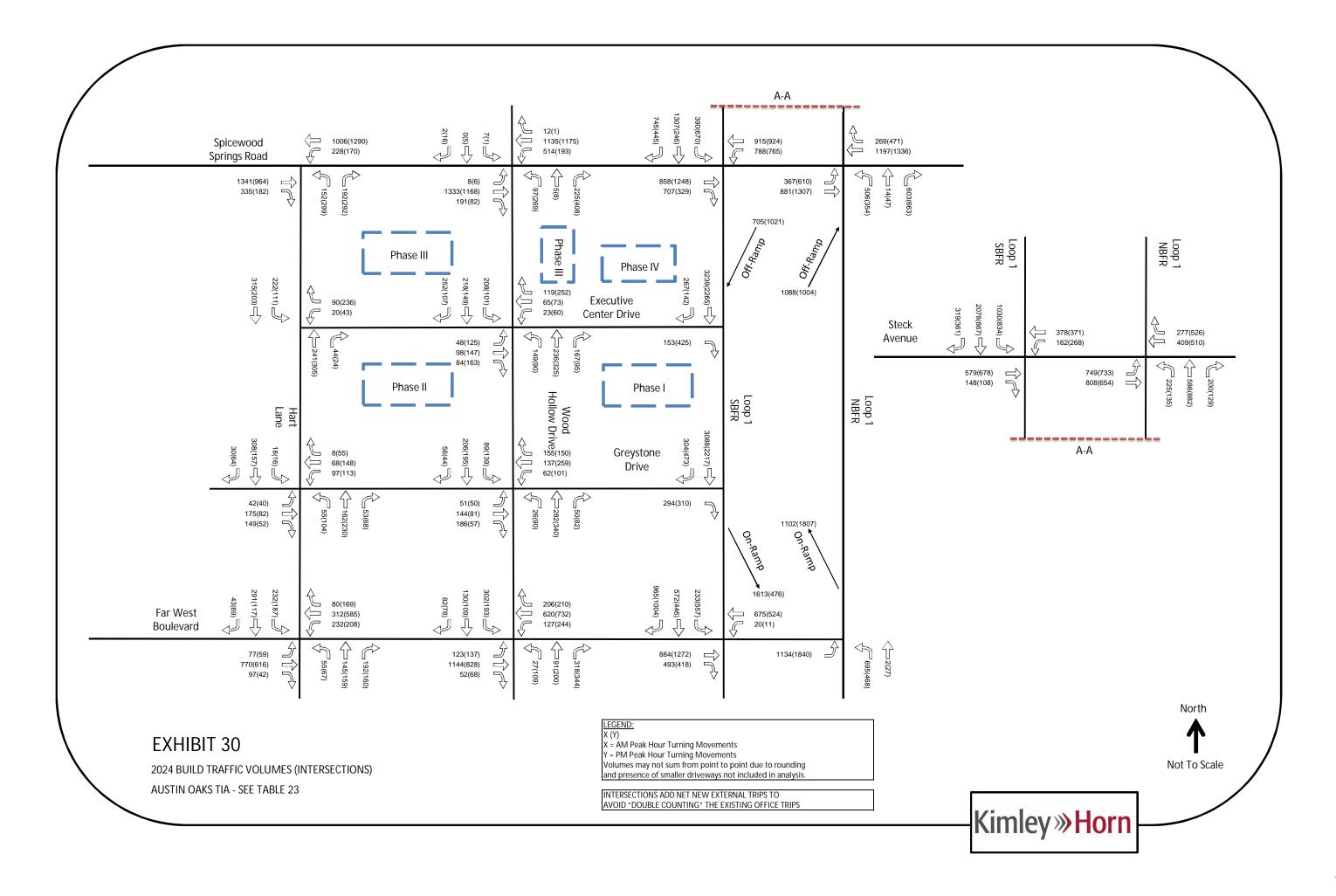
The 2024 Build Scenario assumes the completion of Phases I, II, III, and IV of the Austin Oaks development. *Table 23* summarizes the Daily, and Weekday AM and PM peak hour trip generation the 2024 Build Scenario based on ITE methodology. 2024 Net New External Trips represent the comprehensive site traffic added to the adjacent roadway network after the completion of Phase I, II, III, and IV.

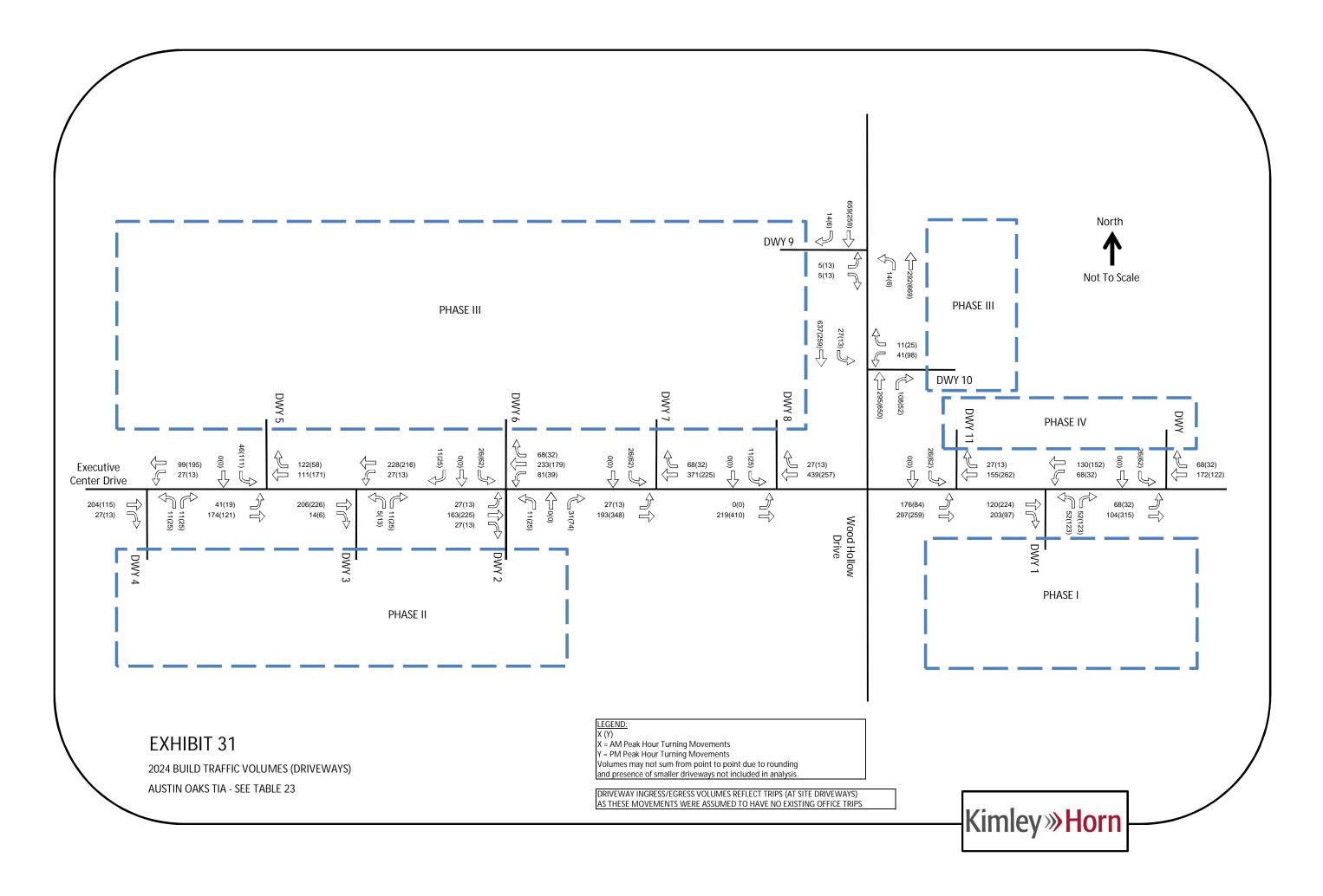
AM Peak Hour Trips PM Peak Hour Trips ITE Code Daily Trips Land Use Amount Units ln Out Total In Out Total Existing General Office Building 445.322 1,000 Sq Ft 710 4,086 556 76 632 98 479 577 Existing General Office Building (To Remain) 710 0 0 1,000 Sq Ft 0 0 0 0 0 0 Reduction in Existing Office Trips 4,086 556 76 632 98 479 577 Apartment 250 Dwelling Unit(s) 220 1,640 25 101 126 101 54 155 100 Room(s) 310 818 31 22 31 60 General Office Building 672.995 1,000 Sq Ft 710 5,591 774 106 880 141 691 832 Medical-Dental Office Building 169.000 1,000 Sq Ft 720 6,695 319 85 404 336 467 Retail/High-Turnover (Sit-Down) Restaurant 46.700 1,000 Sq Ft 932 5,938 278 227 505 276 184 460 2024 Net New Trips 16,596 465 1,336 582 815 1,397 871 Internal Capture Trip Reduction (5%) 1,034 71 27 34 65 99 2024 Trips (at Site Driveways) 19.648 1,356 514 1,870 646 1,229 1,875 2024 Net New External Trips 15,562 800 438 1,238 548 750 1,298

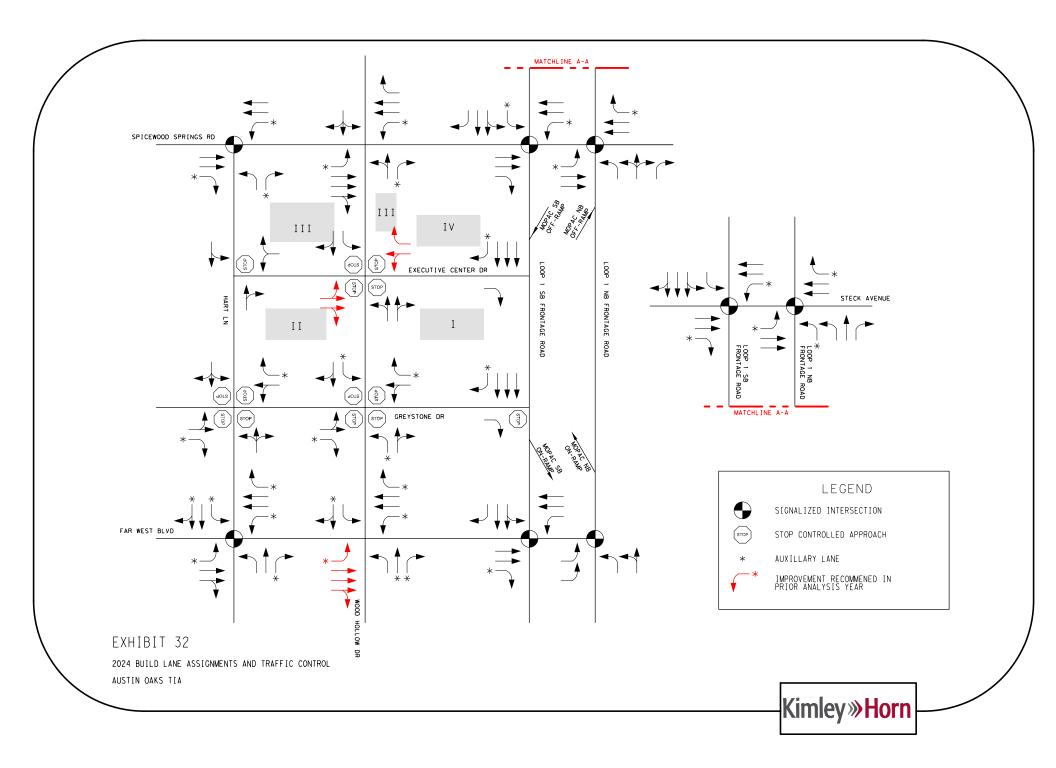

Table 23 – 2024 Build Trip Generation


TRIP DISTRIBUTION AND ASSIGNMENT


The 2024 Trip Assignment Volumes, shown as *Exhibit 28*, are the product of the Global Trip Distribution Percentages and 2024 Net New External Trips, as shown in *Table 23*. The 2024 Local Trip Distribution Percentages, as shown as *Exhibit 29*, were developed based on the size and location of the Austin Oaks development expected to be completed by year 2024.


TOTAL TRAFFIC VOLUMES


For all existing intersections, the assignment volumes were added to 2024 No Build Volumes (*Exhibit 27*) to determine the 2024 Build Traffic Volumes. Existing office trips were not assumed at site driveways. Therefore, the in/out movements to/from site driveways are the product of the Local Trip Distribution Percentages and the Trips (at Site Driveways) shown in *Table 23*. The weekday AM and PM peak hour traffic volumes used for the analysis of the 2024 Build and Mitigated Scenarios are shown in *Exhibit 30* and *Exhibit 31* for network intersections and site driveways, respectively.



B. 2024 BUILD ANALYSIS RESULTS

The analysis was performed using the 2024 Build Lane Assignments and Traffic Control, shown as *Exhibit 32*, which incorporates improvements recommended in analysis years prior to 2024. *Table 24* and *Table 25* summarize the intersection operations for the 2024 Build Scenario AM and PM peak hours, respectively. Synchro reports, including signal timing plans, for all 2024 analyses are provided as *Appendix Q*. Noteworthy traffic operations at intersections are as follows:

- <u>Executive Center Drive & Hart Lane</u>. Vehicles making the 'westbound' left-turn movement from Executive Center Drive have difficulty finding gaps onto Hart Lane. Because the westbound approach is a single lane, the delay at the westbound left-turn movement is also experienced by vehicles waiting to turn right onto Hart Lane.
- <u>Executive Center Drive & Wood Hollow Drive</u>. The northbound approach of Wood Hollow Drive at Executive Center Drive experience an unacceptable LOS due to the high volume expected at this approach.
- <u>Greystone Drive & Hart Lane</u>. The southbound approach of Hart Lane at Greystone Drive
 experiences an unacceptable LOS due to the high volume at this approach and the capacity
 limitations of an all-way stop-controlled (AWSC) intersection.
- <u>Greystone Drive & Wood Hollow Drive</u>. The northbound approach of Wood Hollow Drive at Greystone Drive experiences an unacceptable LOS due to the high volume at this approach and the capacity limitations of an AWSC intersection.
- <u>Spicewood Springs Road & Loop 1</u>. Similar to existing conditions the intersection of Spicewood Springs Road and Loop 1 continues to operate at an unacceptable LOS. (see Existing and Future Regional Impacts)
- <u>Greystone Drive & Loop 1.</u> Similar to existing conditions the eastbound approach of Greystone
 Drive at Loop 1 SBFR continues to operate at an unacceptable LOS. (see Existing and Future
 Regional Impacts)
- Far West Boulevard & Loop 1. Similar to existing conditions the intersection of Far West
 Boulevard and Loop 1 continues to operate at an unacceptable LOS. (see Existing and Future
 Regional Impacts)
- <u>Steck Avenue & Loop 1</u>. Similar to existing conditions the intersection of Steck Avenue and Loop 1 continues to operate at an unacceptable LOS. (see Existing and Future Regional Impacts)

C. TRAFFIC SIGNAL WARRANT ANALYSIS

As part of the analysis of 2024 Build conditions, a traffic signal warrant analysis (TSWA) was performed at the intersection of Executive Center Drive and Wood Hollow Drive. The TSWA followed procedures outlined in the 2011 TxMUTCD.

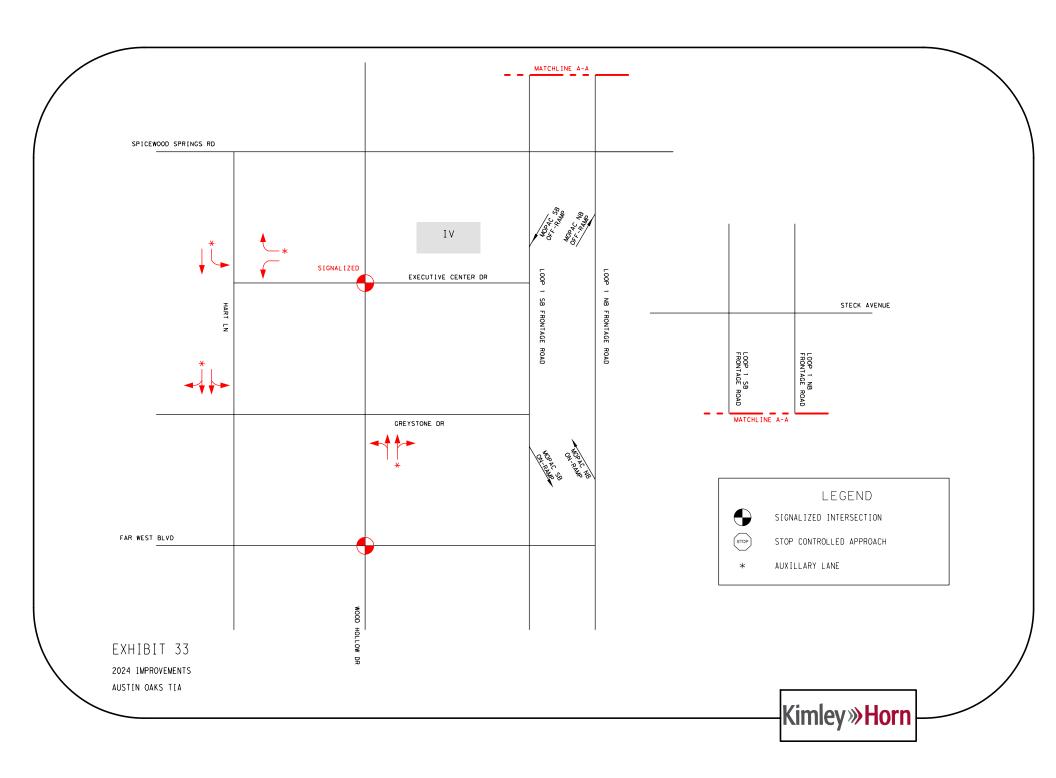
24-Hour recording machine counts collected along Executive Center Drive and Wood Hollow Drive in the vicinity of the intersection. The raw traffic counts (provided in *Appendix E*) were used to determine the hourly variation of traffic volumes along Executive Center Drive and Wood Hollow Drive. The hourly variation was then used to project 2024 volumes at each approach for all hours of the day.

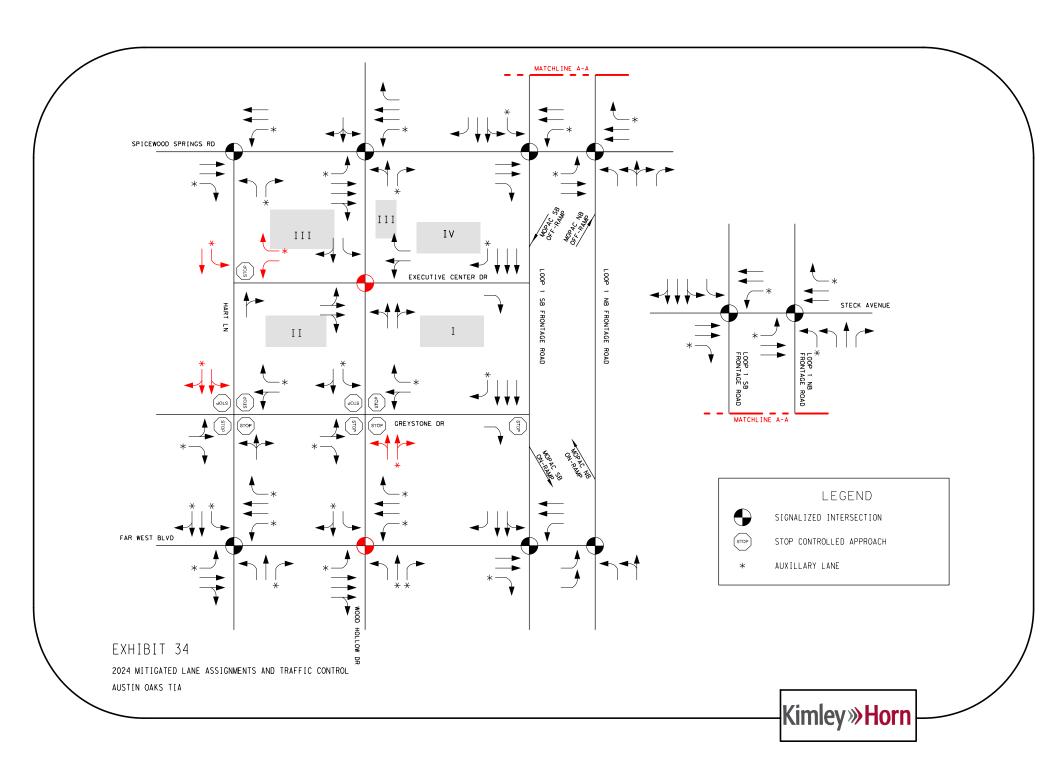
The number of vehicles at the eastbound approach of Executive Center Drive throughout the day is consistently above the minor street volume threshold for warranting a signal. A traffic signal is warranted based on the 2024 projected traffic volumes at the intersection. Results of the TSWA are summarized in the worksheets included in *Appendix T*.

D. 2024 IMPROVEMENTS

Based on the results of the 2024 Build analysis, the following improvements (shown in *Exhibit 33*) are recommended:

- <u>Executive Center Drive & Hart Lane (1).</u> Restripe the westbound approach of Executive Center
 Drive at Hart Lane to include two lanes: exclusive left-turn lane and exclusive right-turn lane.
 This improvement will allow the left-turn and right-turn movements to operate independently
 and improve the LOS of this approach.
- Hart Lane between Executive Center Drive and Spicewood Springs Road (2). Restripe Hart
 Lane between Executive Center Drive and Spicewood Springs Road to provide a southbound
 left-turn bay from Hart Lane to Executive Center Drive. The storage provided in this bay will be
 minimum as space must be preserved to accommodate the dual-left-turn lanes at the
 northbound approach from Hart Lane to Spicewood Springs Road.
- Executive Center Drive & Wood Hollow Drive (3). Consider installing a fully actuated traffic signal at the intersection of Executive Center Drive and Wood Hollow Drive. The City should consider operating northbound and southbound approaches as split phased. Although a signal will ultimately be required, the recommended all-way stop could remain and be monitored until the signal is necessary. An intersection analysis is recommended prior to the installation of the signal.
- <u>Greystone Drive & Hart Lane (4)</u>. Restripe the southbound approach of Hart Lane at Greystone Drive to include two thru lanes. This will require the south-leg of the intersection to be restriped to provide two receiving lanes. A cross-section which will accommodate three travel lanes and two bike lanes can be accomplished using existing pavement. We recommend that this improvement not be implement until necessary based on actual (not projected) traffic demands require it.


<u>Greystone Drive & Wood Hollow Drive (5)</u>. Restripe the northbound approach of Wood Hollow Drive at Greystone Drive to include two thru lanes. This will require the north-leg of the intersection to be restriped to provide two receiving lanes. A cross-section which will accommodate three travel lanes and two bike lanes can be accomplished using existing pavement. We recommend that this improvement not be implement until necessary based on actual (not projected) traffic demands require it.


• Far West Boulevard & Wood Hollow Drive. (6) Adjust signal timing at the intersection of Far West Boulevard and Wood Hollow Drive.

Exhibits showing 2024 Improvements at a conceptual level are provided as Appendix L.

E. 2024 MITIGATED ANALYSIS RESULTS

The 2024 Mitigated analysis was performed using the 2024 Build Traffic Volumes and incorporates the 2024 Improvements enumerated above; 2024 Mitigated Lane Assignments and Traffic Control is shown as *Exhibit 34*. *Table 24* and *Table 25* summarize the intersection operations for the 2024 Mitigated Scenario AM and PM peak hours, respectively. The 2024 improvements reduce delay such that all approaches in the study area, with the exception of intersections along Loop 1, operate at either an acceptable LOS or report delay less than the No Build scenario.

2024 INTERSECTION AM PEAK HOUR ANALYSIS RESULTS

AUSTIN OAKS TIA

Required Study Area 2024 No Build Condition 2024 Build Condition 2024 Mitigated Condition								on						
Intersection	Traffic Control	Approach	95% Queue	V/C	Delay	LOS	95% Queue		Delay	LOS	95% Queue	V/C	Delay	LOS
		EB	0	0.38	0	Α	554	0.75	25.4	С	554	0.75	25.4	С
Spicewood Springs Road & Hart Lane	TWSC/ Signalized	WB	37	0.34	2.3	A	295	0.49	10.6	В	295	0.49	10.6	В
		NB INT	187	0.84	53.7	D	96	0.52	25.5 19.8	C B	96	0.52	25.5 19.8	C B
		EB	344	0.57	22.4	С	#580	0.83	37.4	D	#580	0.83	37.4	D
Spicewood Springs		WB	m405	1	28	С	#604	1	31.4	С	#604	1	31.4	С
Road & Wood Hollow Drive	Signalized	NB	86	0.23	45.4	D	132	0.34	26.5	С	132	0.34	26.5	С
Hollow Drive		SB INT	0	0.01	43.3 26.7	D C	0	0.01	38.5 33.6	D C	0	0.01	38.5 33.6	D C
		EB	#1030	1.78	284.1	<i>F</i>	#626	1.2	91.2	F	#626	1.2	91.2	<i>F</i>
Spicewood Springs	0	WB	m538	0.99	19	В	m#618	1.17	52.4	D	m#618	1.17	52.4	D
Road & Loop 1 SBFR	Signalized	SB	m#409	1.4	147.4	F	m#407	1.44	125.1	F	m#407	1.44	125.1	F
		INT			150.2	F			94.1	F			94.1	F
Spicewood Springs		EB WB	m45 #555	0.46 0.89	2.4 45.4	A D	m44 #723	0.52 1.03	2.5 68.7	A E	m44 #723	0.52 1.03	2.5 68.7	A E
Road & Loop 1	Signalized	NB	#555	1.53	45.4 157.6	<i>F</i>	#723 #755	1.73	236.4	F	#723 #752	1.73	236.4	F
NBFR		INT	#000	7.00	63.3	E	#700	1.70	96.3	F	1102	1.70	96.3	F
Evenutive Conten		WB	4	0.05	12.5	В	31	0.3	16.7	В	13	0.15	14.7	В
Executive Center Drive & Hart Lane	TWSC	NB	0	0.18	0	Α	0	0.2	0	Α	0	0.2	0	Α
		SB	7	0.08	2.4	A	21	0.22	5.1	A	21	0.22	3.6	A
For soft or Oracles		EB WB	11 8	0.13	21.2 14.9	C B	1.5 1.3	0.348 0.305	15.3 14.5	B B	60 74	0.24	21.7 21.2	C
Executive Center Drive & Wood	TWSC/ Signalized	NB	2	0.03	1.1	A	5	0.305	24.9	С	170	0.22	31.9	С
Hollow Drive		SB	8	0.1	2.7	A	13.5	1.074	53.3	D	#392	0.92	38.2	D
		INT							33.8	С			31.7	С
Executive Center Dr. & Loop 1 SBFR	TWSC	EB	3	0.04	11	В	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE
DI. & LOUP I SERK		SB NB	3.6	0.77 0.571	19.8	A B	FREE 5.4	0.698	26.6	FREE	FREE 5.7	0.719	28.6	FREE
		EB	3.6	0.575	17.8	В	4	0.61	19.7	В	3.7	0.592	18.5	В
Greystone Drive & Hart Lane	AWSC	WB	2.3	0.451	17.5	В	2.7	0.504	20	В	2.6	0.488	18.9	В
rian Lanc		SB	7.6	0.806	32.3	С	9.8	0.885	44.9	D	2.6	0.483	17.3	В
		INT		0.400	22.7	С		0.040	29	С	2.5	<u> </u>	20.5	С
		NB EB	1.9 1.8	0.403 0.382	13.9 12.9	B B	8.4	0.848 0.527	41.1 18.9	D B	2.5 2.7	0.475	17.6 17.6	B B
Greystone Drive &	AWSC	WB	2.2	0.362	14.5	В	3.1	0.527	18.9	В	2.7	0.503	17.6	В
Wood Hollow Drive		SB	2.4	0.464	15.1	В	4.9	0.675	23.9	С	4.5	0.65	22	С
		INT			14	В			25.6	С			18.7	В
Greystone Drive &	TWSC	EB	302	1.19	172.1	F	444	1.42	254.9	F	444	1.42	254.9	F
Loop 1 SBFR		SB EB	0 436	0.72	43.3	A D	0 452	0.63	29.6	A C	0 452	0.63	29.6	A C
Faw West		WB	#268	0.82	53.5	D	#253	0.74	43.1	D	#262	0.74	32.4	С
Boulevard & Hart	Signalized	NB	222	0.86	67.8	E	205	0.74	51.4	D	205	0.74	51.4	D
Lane	_	SB	#367	0.96	75.1	E	273	0.85	54.9	D	273	0.85	54.9	D
		INT	- 10	0.70	56.7	E	101	0.54	42	D	4=4	2.50	39.3	D
		EB WB	m549 m186	0.73 0.72	41.4 35.6	D D	401 281	0.54 0.61	33.1 56.7	C <i>E</i>	454 290	0.52	29.6 42.9	C D
Faw West Boulevard & Wood	Signalized	NB	#349	1.04	115	F	#252	0.96	88.2	F	162	0.83	64.8	E
Hollow Drive		SB	#407	0.71	43.9	D	#433	0.72	44.5	D	341	0.85	54.7	D
		INT			50.7	D			49.4	D			42.3	D
Faw West	Signalized	EB	m430	0.67	19.6	В	m458	0.68	22.4	С	462	0.68	22.2	С
Boulevard & Loop 1		WB SB	m13 m284	0.48 1.16	1.9 69	A E	m13 m222	0.57 0.63	5.7 13.6	A B	m13 m222	0.57	5.7 13.6	A B
SBFR		INT	111204	1.10	39.5	D	111222	0.63	15.3	В	111222	0.03	15.3	В
		EB	15	0.47	3.1	A	25	0.56	5.5	A	25	0.56	5.5	A
Faw West Blvd. & Loop 1 NBFR	Signalized	NB	363	0.7	47.6	D	#470	0.71	43.7	D	#468	0.71	43.7	D
		INT			19.3	В			20.1	С			20	В
Cto als Assa		EB WB	#413	1.03	88	<i>F</i>	#413	1.03	88	<i>F</i>	#413 m/8	0.47	88	<i>F</i>
Steck Avenue & Loop 1 SBFR	Signalized	WB SB	m48 #1806	0.47 1.52	5.9 233.9	A F	m48 #1886	0.47 1.57	6 250.7	A F	m48 #1886	0.47 1.57	6 250.7	A F
		INT			184.3	F			197.4	F			197.4	F
		EB	m123	0.72	4.9	А	m123	0.72	4.9	Α	m123	0.72	4.9	А
Steck Avenue &	Signalized	WB	#267	0.85	62.8	E	#267	0.85	62.8	Ε	#267	0.85	62.8	E
Loop 1 NBFR	J = ===	NB	m#1406	3.04	766.6	F	m#1391	3.04	765	F	m#1391	3.04	765 252.4	F
Site Driveways (Stop-Controlled App	INT proach Only)			253.9	F			253.4	F			253.4	F
	ection	Approach												
Driveway 1	1 (Phase I)	NB					17	0.19	12.4	В	17	0.19	12.4	В
	2 (Phase II)	NB					6	0.08	11.7	В	6	0.08	11.7	В
	(Phase III)	SB					9	0.11	16.3	С	9	0.11	16.3	С
		NB NB					3	0.03	10.5 10.5	B B	3	0.03	10.5 10.5	B B
Driveway 4 (Phase III)		SB					9	0.04	11.9	В	9	0.04	11.9	В
Driveway 5	Driveway 7 (Phase III)							1	1	В	8	0.09	1	В
	,	SB					8	0.09	14.1	D		0.00	14.1	
Driveway 7	,	SB SB					2	0.09	14.1	В	2	0.03	14.1	В
Driveway 7 Driveway 8 Driveway 9	7 (Phase III) 3 (Phase III) 9 (Phase III)	SB SB EB					2 3	0.03 0.03	14.5 16.8	B C	2	0.03	14.5 16.8	С
Driveway 7 Driveway 8 Driveway 9 Driveway 10	7 (Phase III) 8 (Phase III) 9 (Phase III) 0 (Phase III)	SB SB EB WB					2 3 26	0.03 0.03 0.26	14.5 16.8 27.7	B C D	2 3 26	0.03 0.03 0.26	14.5 16.8 27.7	C D
Driveway 7 Driveway 8 Driveway 9 Driveway 10 Driveway 1	7 (Phase III) 3 (Phase III) 9 (Phase III)	SB SB EB					2 3	0.03 0.03	14.5 16.8	B C	2	0.03	14.5 16.8	С

2024 INTERSECTION PM PEAK HOUR ANALYSIS RESULTS

AUSTIN OAKS TIA

Re	equired Study Area		2	024 No Bui	ild Conditio	n		2024 Build	Condition		2	024 Mitigat	ed Condition	n
Intersection	Traffic Control	Approach	95% Queue	V/C	Delay	LOS	95% Queue	V/C	Delay	LOS	95% Queue	V/C	Delay	LOS
Spicewood Springs Road & Hart Lane		EB	0	0.3	0	A	465	0.61	28.1	С	465	0.61	28.1	С
	TWSC/ Signalized	WB NB	20 834	0.4 1.75	1.1 381.1	A F	304 211	0.5 0.77	11.9 35.9	B D	304 211	0.5 0.77	11.9 35.9	B D
		INT	634	1.75	301.1	F	211	0.77	22.1	С	211	0.77	22.1	С
		EB	250	0.39	12.6	В	500	0.6	17.7	В	517	0.64	18.8	В
Spicewood Springs		WB	382	0.54	11.2	В	429	0.8	25.8	С	476	0.86	31.5	С
Road & Wood	Signalized	NB	#365	0.89	73.6	E	386	0.74	42.9	D	351	0.67	34.4	С
Hollow Drive		SB	32	0.03	49.1	D	27	0.02	35	С	25	0.02	31.6	С
	<u> </u>	INT EB	#902	1.29	22.7 162.4	C F	#1095	1.48	26.3 219.5	C F	#1095	1.48	27.3 220.5	C F
Spicewood Springs		WB	m527	0.87	12.1	В	m600	0.97	14.7	В	m600	0.97	14.7	В
Road & Loop 1 SBFR	Signalized	SB	#707	1.28	125.3	F	#707	1.28	105.2	F	#707	1.28	105.2	F
ODITO		INT			97.2	F			111.2	F			111.5	F
Spicewood Springs		EB	m180	0.9	8.7	Α	m179	1.03	14.9	В	m178	1.03	14.8	В
Road & Loop 1	Signalized	WB	687	0.84	39.2	D	#787	0.92	44.5	D	#787	0.92	44.5	D
NBFR		NB INT	#662	1.66	233 68.5	F E	\$747	1.86	309.2 91.4	F F	#747	1.86	309.2 91.4	F
		WB	31	0.3	13.8	В	155	0.74	29.9	С	70	0.5	17.6	В
Executive Center Drive & Hart Lane	TWSC	NB	0	0.25	0	Α	0	0.26	0	Α	0	0.26	0	Α
Drive & Hart Larie		SB	2	0.02	0.9	Α	11	0.13	4	Α	11	0.16	3.1	А
		EB	118	0.69	39.2	D	7.5	0.825	42.9	D	102	0.49	20.7	С
Executive Center	TWOO! Cirrary	WB	48	0.4	16.8	В	8.6	0.878	42.6	D	m88	0.44	20	В
Drive & Wood Hollow Drive	TWSC/ Signalized	NB SB	1	0.01 0.02	0.3	A A	9.8 9.9	0.925 0.926	62.2 52.5	E	162 252	0.81	33.4 49.1	C D
		INL	1	0.02	0.9	^	9.9	0.920	J2.5	U U	202	0.01	30.4	С
Executive Center	TMOO	EB	120	0.69	37.8	D	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE
Dr. & Loop 1 SBFR	TWSC	SB	0	0.56	0	Α	FREE	FREE	FREE	FREE	FREE	FREE	FREE	FREE
		NB	5	0.667	20.5	С	6.3	0.735	25	С	7.9	0.808	33.5	С
Greystone Drive &		EB	1.1	0.267	12	В	1.1	0.279	12.5	В	1.2	0.284	12.8	В
Hart Lane	AWSC	WB SB	2.9 1.9	0.516 0.399	15.8 13.5	B B	3.5 2.4	0.569 0.458	17.7 15	B B	3.6 1.2	0.579 0.297	18.4 12.5	B B
		INT	1.9	0.399	16.4	В	2.4	0.436	18.9	В	1.2	0.291	21.7	С
		NB	4.2	0.616	18.3	В	10.8	0.934	47.7	D	3.7	0.596	20.9	С
Cravatana Driva 8		EB	1	0.258	12.1	В	1.5	0.339	15.5	В	1.4	0.329	14.9	В
Greystone Drive & Wood Hollow Drive	AWSC	WB	5.7	0.71	23.1	С	8	0.835	33.2	С	7.6	0.814	30.7	С
		SB	1.5	0.339	13.4	В	3.3	0.554	19.3	В	3.5	0.574	19.2	В
Cravatana Driva 8		INT EB	202	0.92	18.3 81.6	В F	382	1.17	32.5 143.4	C F	382	1.17	22.9 143.4	C F
Greystone Drive & Loop 1 SBFR	TWSC	SB	0	0.54	0	A	0	0.5	0	A	0	0.5	0	A
·		EB	252	0.39	21.7	С	243	0.36	17.5	В	243	0.36	17.5	В
Faw West	Signalized	WB	73	0.42	7.6	Α	282	0.42	31.5	С	282	0.42	31.5	С
Boulevard & Hart		NB	208	0.78	61.4	E	203	0.73	54.5	D	203	0.73	54.5	D
Lane		SB	200	0.78	62.3	E	222	0.74	54	D	222	0.74	54	D
		INT EB	252	0.55	28.1 17.4	C B	326	0.47	34.5 35.6	C D	326	0.47	34.5 35.6	C D
Faw West		WB	m185	1.12	47.7	D	368	0.79	45.7	D	368	0.79	45.7	D
Boulevard & Wood	Signalized	NB	#370	0.92	80.9	F	265	0.82	51.2	D	265	0.82	51.2	D
Hollow Drive		SB	233	0.81	69.2	E	248	0.83	69.2	E	248	0.83	69.2	E
		INT			47.1	D			46.3	D			46.3	D
Faw West	Signalized	EB	m#721	0.83	23.2	С	#834	0.9	29.5	C	\$834	0.9	29.5	C
Boulevard & Loop 1		WB SB	18 #1251	0.29 1.86	3.8 277.7	A F	17 #735	0.33 1.32dl	3.3 78.6	A E	17 #735	0.33 0.71	3.3 78.6	A E
SBFR		INT	#1251	7.00	139.4	F	#733	1.3241	49.5	D	#733	0.71	49.5	D
F. 144 - 51 - 1		EB	m#987	1.09	70.8	E	m#1063	1.2	117	F	m#1063	1.2	117	F
Faw West Blvd. & Loop 1 NBFR	Signalized	NB	212	0.35	26	С	247	0.4	26.8	С	247	0.4	26.8	С
,		INT			61.7	E			97.9	F			97.9	F
Stook Assess 2		EB WB	#449 8	1.02 0.36	84.9 0.7	F Δ	#449 8	1.02 0.36	84.9 0.7	<i>F</i> △	#449 8	1.02 0.36	84.9 0.7	<i>F</i> Δ
Steck Avenue & Loop 1 SBFR	Signalized	SB	8 #11 52	0.36 1.57	303.2	A F	#11 87	0.36 1.61	321.6	A F	8 #11 87	0.36 1.61	321.6	A F
		INT		,	196.9	F			209.4	F			209.4	F
Steck Avenue & Loop 1 NBFR		EB	m376	1.14	46.5	D	m349	1.14	46.5	D	m349	1.14	46.5	D
	Signalized	WB	#657	1.12	86.7	F	#657	1.12	86.7	F	#667	1.12	86.7	F
		NB	#1741	2.36	594.3	F	#1741	2.36	594.3	F	#1741	2.36	594.3	F
Site Drivewaya	Stop-Controlled App	INT			234	F			234	F			234	F
,	stop-Controlled Applection	Approach												
	1 (Phase I)	NB					58	0.45	15.9	С	58	0.45	15.9	С
,	2 (Phase II)	NB					16	0.17	12	В	16	0.17	12	В
	(Phase III)	SB					23	0.24	16.9	С	23	0.24	16.9	С
	3 (Phase II)	NB					5	0.06	10.7	В	5	0.06	10.7	В
	Driveway 4 (Phase II) NB Driveway 5 (Phase III) SB						6	0.07	10.2	В	6	0.07	10.2	В
	(Phase III) 7 (Phase III)	SB SB					24 18	0.25 0.2	12.4 14.3	B B	24 18	0.25 0.2	12.4 14.3	B B
-	(Phase III)	SB					6	0.2	15	В	6	0.2	15	В
	(Phase III)	EB					4	0.05	12.3	В	4	0.05	12.3	В
	0 (Phase III)	WB					72	0.53	34.8	D	72	0.53	34.8	D
	1 (Phase IV)	SB					43	0.37	15.6	С	43	0.37	15.6	С
Driveway 12	2 (Phase IV)	SB					20	0.22	12.4	В	20	0.22	12.4	В

A separate conceptual analysis was performed to examine the existing and future traffic operations at intersections outside the required study area. These intersections were discussed at the Austin Oaks charrette and are as follows:

Neighborhood Study Area

- Spicewood Springs Road & Mesa Drive
- Greystone Drive & Mesa Drive
- Greystone Drive & Chimney Corners
- Far W Boulevard & Mesa Drive
- Anderson Lane & Shoal Creek Boulevard

Existing roadway conditions and 2016 traffic volumes were used to determine the LOS at intersections in the neighborhood study area and identify operational deficiencies that may exist. Similar to the methodology used to evaluate intersections within the required study area, background traffic growth and proposed development traffic volumes (distributed throughout the neighborhood study area) were added to 2016 traffic volumes to evaluate future traffic operations. These intersections will not be part of the development's consideration for future improvements and are provided for information purposes.

In the 2016 Existing conditions all intersections with the neighborhood study area operate at an acceptable LOS. Based on a preliminary analyses of future years, the following improvements would improve traffic operations at intersections within the neighborhood study area:

- Anderson Lane & Shoal Creek Boulevard (2018). Extend the eastbound left-turn bay of Anderson Lane to provide adequate storage for vehicles making a left-turn movement onto Shoal Creek Boulevard and prevent spill-back into the adjacent lane. Also, adjust splits to optimize traffic signal operations at the intersection while maintaining coordination along Anderson Lane.
- <u>Spicewood Springs Road & Mesa Drive (2022).</u> Construct an exclusive left-turn lane at the northbound approach of Mesa Drive at Spicewood Springs Road; the updated lane configuration at this approach will be two exclusive left-turn lanes, a shared thru-right lane, and an exclusive right-turn lane. Furthermore, restripe the westbound approach of Spicewood Springs Road to include an exclusive left-turn lane, two exclusive thru lanes, and a shared thru-right lane. Concurrently with this restriping, the raised channelizing device at the southbound right-turn movement of Mesa Drive must be removed and the westbound receiving lanes of Spicewood Springs Road (downstream of intersection) must be widened

<u>Greystone Drive & Mesa Drive (2024).</u> Monitor the traffic operations at the intersection of Greystone Drive and Mesa Drive and implement improvements as needed.

Anderson Lane & Shoal Creek Boulevard (2018). Widen the southbound approach of Shoal
Creek Boulevard to a six-lane cross-section at the intersection of Anderson lane. The
southbound approach should include an exclusive left-turn lane, two-exclusive thru lanes, and
an exclusive right-turn lane; two northbound receiving lanes with remain.

<u>Far West Boulevard & Mesa Drive (2024+)</u>. Monitor the traffic operations at the intersection of Far West Boulevard and Mesa Drive and implement improvements as needed.

Office traffic, which accounts for the majority of trips generated by the proposed development, is expected to originate from locations at a considerable distance from the site. For this reason, the office traffic will primarily use the major arterials to access the proposed development. The changes in traffic volumes along minor roadways in the neighborhood study area are the result of background traffic growth.

With a traffic impact mitigation plan, a developer is required to pay their pro rata (or "fair share") for needed improvements to arterial streets. The pro-rata share of cost is estimated by multiplying the cost of implementing the required roadway/intersection improvements by the percentage of site trips in overall traffic using the roadway/intersection.

This study identifies twenty-three specific existing improvements. The improvements' costs have been broken up by pro-rated shares. For the identified improvements, the developer's pro rata share is anticipated to be approximately \$628,000. These funds will be allocated to construct a traffic signal at Spicewood Springs Road and Hart Lane, as well as other improvements to be determined through a discussion with City of Austin staff.

Tables 26 and 27 provide a summary of the recommendations associated with the study area, the estimated cost, and the developer's pro-rata for 2016 and future improvements, respectively. The costs shown in the table are planning level estimates and are not based on any actual survey and/or design exercise.

OPINION OF PROBABLE COST SUMMARY – PHASE I IMPROVEMENTS

AUSTIN OAKS TIA

Improvement Name	Improvement Description	Opinion of Probable Cost (\$)	Site Traffic (%)	Pro-Rata Cost Share (\$)
Spicewood Springs Road & Hart Lane (2018)	Install a fully actuated traffic signal at the intersection of Spicewood Springs Road and Hart Lane.	\$ 420,000	11.0%	\$ 46,200
Spicewood Springs Road & Hart Lane (2018)	Widen Hart Lane between Executive Center Drive and Spicewood Springs Road.	\$ 150,000	11.0%	\$ 16,500
	Extend the westbound left-turn bay of Spicewood Springs Road to Wood Hollow Drive.	\$ 50,000	42.5%	\$ 21,250
4. Spicewood Springs Road & Wood Hollow Drive (2018)	Provide a right-turn overlap operation at the northbound right-turn movement of Wood Hollow Drive to Spicewood Springs Road.	\$ 10,000	29.3%	\$ 2,930
5. Executive Center Drive & Wood Hollow Drive (2018)	Restripe Wood Hollow Drive between Executive Center Drive and Spicewood Springs Road.	\$ 20,000	40.1%	\$ 8,020
6. Spicewood Springs Road & Loop 1 SBFR (2018)	Provide a FREE, channelized operation at the southbound right-turn movement from Loop 1 SBFR to FSpicewood Springs Road (westbound)	\$ 175,000	7.3%	\$ 12,780
7. Spicewood Springs Road & Loop 1 SBFR (2018)	Provide a FREE eastbound right-turn movement from Spicewood Springs Road to Loop 1 SBFR	\$ 35,000	7.3%	\$ 2,560
8. Executive Center Drive & Wood Hollow Drive (2018)	Provide stop-control at the northbound and southbound approaches of Wood Hollow Drive.	\$ 10,000	52.6%	\$ 5,260
9. Executive Center Drive & Loop 1 SBFR (2018)	Construct a southbound right-turn deceleration lane on Loop 1 SBFR (upstream of Executive Center Drive).	\$ 160,000	77.5%	\$ 124,000
10. Executive Center Drive & Loop 1 SBFR (2018)	Construct a southbound acceleration lane on Loop 1 SBFR (downstream of Executive Center Drive).	\$ 130,000	85.6%	\$ 111,280
11. Greystone Drive & Loop 1 SBFR (2018)	Construct a southbound right-turn deceleration lane on Loop 1 SBFR (upstream of Greystone Drive).	\$ 160,000	39.5%	\$ 63,200
12. Far West Boulevard & Hart Lane (2018)	Widen the northbound approach and restripe the southbound approach of Hart Lane at the intersection of Far West Boulevard.	\$ 110,000	8.6%	\$ 9,460
13. Far West Boulevard & Wood Hollow Drive (2018)	Provide a right-turn overlap operation at the northbound right-turn movement from Wood Hollow Drive to Far West Boulevard.	\$ 20,000	5.8%	\$ 1,160
14. Far West Boulevard & Loop 1 SBFR (2018)	Provide a FREE, channelized operation at the southbound right-turn movement from Loop 1 SBFR to Far West Boulevard (westbound)	\$ 175,000	7.5%	\$ 13,130
	Phase I Improvements Subtotal	\$ 1,625,000	-	\$ 437,730

THE ENGINEER HAS NO CONTROL OVER THE COST OF LABOR, MATERIALS, EQUIPMENT, OR OVER THE CONTRACTOR'S METHODS OF DETERMINING PRICES OR OVER COMPETITIVE BIDDING OR MARKET CONDITIONS. OPINIONS OF PROBABLE COSTS PROVIDED HEREIN ARE BASED ON THE INFORMATION KNOWN TO ENGINEER AT THIS TIME AND REPRESENT ONLY THE ENGINEER'S JUDGMENT AS A DESIGN PROFESSIONAL FAMILIAR WITH THE CONSTRUCTION INDUSTRY. THE ENGINEER CANNOT AND DOES NOT GUARANTEE THAT PROPOSALS, BIDS, OR ACTUAL CONSTRUCTION COSTS WILL NOT VARY FROM ITS OPINIONS OF PROBABLE COSTS.

OPINION OF PROBABLE COST SUMMARY – PHASE II, III, & IV IMPROVEMENTS

AUSTIN OAKS TIA

Improvement Name	Improvement Description	Opinion of Probable Cost (\$)	Site Traffic (%)	Pro-Rata Cost Share (\$)	
	2020 improvements				
Adjust signal timing at the intersection of Far West Wood Hollow Drive (2020) Adjust signal timing at the intersection of Far West Boulevard and Wood Hollow Drive.		\$ 10,000	5.6%	\$ 56	
	2022 improvements				
1. Executive Center Drive & Wood Hollow Drive (2022)	Widen Executive Center Drive to include a four-lane cross-section at eastbound and westbound approaches	\$ 20,000	52.6%	\$ 10,52	
2. Far West Boulevard & Wood Hollow Drive (2022)	Restripe the eastbound approach of Far West Boulevard at Wood Hollow Drive.	\$ 10,000	3.0%	\$ 30	
	2024 improvements				
Executive Center Drive & Hart Lane (2024)	Restripe the westbound approach of Executive Center Drive at Hart Lane (1a) and restripe Hart Lane between Executive Center Drive and Spicewood Springs Road (1b).	\$ 20,000	79.1%	\$ 15,82	
2. Executive Center Drive & Hart Lane (2024)	Restripe Restripe Hart Lane between Executive Center Drive and Spicewood Springs Road	\$ 20,000	79.1%	\$ 15,82	
3a. Executive Center Drive & Wood Hollow Drive (2024)	Preform Traffic Signal Warrant Analysis at the intersection of Executive Center Drive and Wood Hollow Drive.	\$ 10,000	52.6%	\$ 5,26	
3b. Executive Center Drive & Wood Hollow Drive (2024)	Install a fully actuated traffic signal at the intersection of Executive Center Drive and Wood Hollow Drive.	\$ 250,000	52.6%	\$ 131,50	
4. Greystone Drive & Hart Lane (2024)	Restripe the southbound approach of Hart Lane at Greystone Drive.	\$ 20,000	9.7%	\$ 1,94	
5. Greystone Drive & Wood Hollow Drive (2024)	Restripe the northbound approach of Wood Hollow Drive at Greystone Drive.	\$ 20,000	40.2%	\$ 8,04	
6. Far West Boulevard & Wood Hollow Drive (2024)	Adjust signal timing at the intersection of Spicewood Springs Road and Wood Hollow Drive.	\$ 10,000	5.6%	\$ 56	
	Phase II, III, & IV Improvements Subtotal	\$ 390,000	-	\$ 190,32	
	Recommened Improvements Total (Rounded)	\$ 2,015,000	-	\$ 628,00	

THE ENGINEER HAS NO CONTROL OVER THE COST OF LABOR, MATERIALS, EQUIPMENT, OR OVER THE CONTRACTOR'S METHODS OF DETERMINING PRICES OR OVER COMPETITIVE BIDDING OR MARKET CONDITIONS. OPINIONS OF PROBABLE COSTS PROVIDED HEREIN ARE BASED ON THE INFORMATION KNOWN TO ENGINEER AT THIS TIME AND REPRESENT ONLY THE ENGINEER'S JUDGMENT AS A DESIGN PROFESSIONAL FAMILIAR WITH THE CONSTRUCTION INDUSTRY. THE ENGINEER CANNOT AND DOES NOT GUARANTEE THAT PROPOSALS, BIDS, OR ACTUAL CONSTRUCTION COSTS WILL NOT VARY FROM ITS OPINIONS OF PROBABLE COSTS.

The improvements recommended as a result of this TIA are as follows:

2018 Improvements (14):

- <u>Spicewood Springs Road & Hart Lane (1).</u> Consider installing a fully actuated traffic signal at
 the intersection of Spicewood Springs Road and Hart Lane. Install an advance warning flasher
 west of the intersection synchronized with the traffic signal to address the potential safety issue
 related to the horizontal curvature of Spicewood Springs Road. Widen the northbound
 approach of Hart Lane to include dual left-turns.
- Hart Lane between Executive Center Drive and Spicewood Springs Road (2). Widen Hart Lane between Executive Center Drive and Spicewood Springs Road to accommodate a three-lane northbound approach at the intersection of Hart Lane at Spicewood Springs Road. Restripe the northbound approach of Hart Lane to include dual-left-turn lanes and an exclusive right-turn lane (three 10' approach lanes); a single northbound receiving lane (14') and southbound bike lane (5') will remain.
- <u>Spicewood Springs Road & Wood Hollow Drive (3)</u>. Extend the westbound left-turn bay of Spicewood Springs Road to Wood Hollow Drive to provide adequate storage for vehicles making a left-turn movement and prevent spill-back into the adjacent lane. 15% of the inbound trips generated by the Austin Oaks development were assigned to the westbound left-turn movement of Spicewood Springs Road to Wood Hollow Drive. The proposed left-turn bay extension will mitigate the impact of site traffic at this movement.
- <u>Spicewood Springs Road & Wood Hollow Drive (4).</u> Provide a right-turn overlap operation at the northbound right-turn movement of Wood Hollow Drive to Spicewood Springs Road. This will allow the northbound right-turn phase and the westbound left-turn phase to operate simultaneously and decrease delay at the northbound approach of Wood Hollow Drive. 15% of the outbound trips generated by the Austin Oaks development were assigned to the right-turn movement of Wood Hollow Drive to Spicewood Springs Road. The proposed right-turn overlap operation will mitigate the impact of site traffic at this movement.
- Wood Hollow Drive between Executive Center Drive and Spicewood Springs Road (5).
 Concurrently with the right-turn overlap improvement at the northbound right-turn movement of Wood Hollow Drive to Spicewood Springs Road, restripe Wood Hollow Drive between Executive Center Drive and Spicewood Springs Road to allow two northbound lanes, one southbound lane, and bike lanes on both sides of the roadway. Restricting parking and extending the northbound right-turn lane will maximize the operations at the northbound approach of Wood Hollow Drive at Spicewood Springs Road.
- <u>Spicewood Springs Road & Loop 1 SBFR</u> (6). Provide a FREE, channelized operation at the southbound right-turn movement from Loop 1 SBFR to Spicewood Springs Road (westbound). On Spicewood Springs the existing pavement can accommodate a FREE operation, however, there are design constraints due to the existing bike lane. To the extent possible, an 8' sidewalk will be provided along Mopac Southbound Frontage Road. Any improvements at Mopac Frontage Road are subject to TxDOT approval.
- Spicewood Springs Road & Loop 1 SBFR (7). Provide striping and vertical panels (or other physical barrier) at the southbound receiving lanes of Loop 1 SBFR to facilitate a FREE eastbound right-turn movement from Spicewood Springs Road to Loop 1 SBFR. This movement is currently channelized and a merge with Loop 1 SBFR can be accomplished with existing pavement. 12' receiving lanes should be maintained along Mopac Southbound Frontage Road. To the extent possible, an 8' sidewalk will be provided along Mopac Southbound Frontage Road. Any improvements at Mopac Frontage Road are subject to TxDOT approval.

- Executive Center Drive & Wood Hollow Drive (8). Implement stop-control at the northbound and southbound approaches of Wood Hollow Drive. Restripe the northbound approach of Wood Hollow Drive at Executive Center Drive to include a shared thru-left and a shared thru-right. The shared thru-right lanes will also be marked as shared bike lanes. This will require the north-leg of the intersection to be restriped to provide two receiving lanes. Restripe the southbound approach of Wood Hollow Drive at Executive Center Drive to include an exclusive right-turn lane and a shared thru-left. The proposed cross-sections can be accomplished using existing pavement.
- <u>Executive Center Drive & Loop 1 SBFR (9)</u>. Construct a southbound right-turn deceleration lane on Loop 1 SBFR (upstream of Executive Center Drive). Additionally, install vertical panels (or other physical barrier) along Loop 1 Southbound Off-Ramp to prevent access to Executive Center Drive from southbound Loop 1 Southbound Off-Ramp and reduce weaving in this section of the frontage road. To the extent possible, an 8' sidewalk will be provided along Mopac Southbound Frontage Road. Any improvements at Mopac Frontage Road are subject to TxDOT approval.
- <u>Executive Center Drive at Loop 1 SBFR (10)</u>. Construct a southbound acceleration lane on Loop 1 SBFR, downstream of Executive Center Drive to provide a FREE operation at the eastbound right-turn movement of Executive Center Drive. To the extent possible, an 8' sidewalk will be provided along Mopac Southbound Frontage Road. Any improvements at Mopac Frontage Road are subject to TxDOT approval.
- <u>Greystone Drive & Loop 1 SBFR (11)</u>. Construct a southbound right-turn deceleration lane on Loop 1 SBFR (upstream of Greystone Drive). 15% of the outbound trips generated by the Austin Oaks development were assigned to the eastbound right-turn movement of Greystone Drive at Loop 1 SBFR. The proposed southbound right-turn deceleration lane will mitigate the impact of site traffic at eastbound approach by removing vehicles turning right from the southbound thru lane. To the extent possible, an 8' sidewalk will be provided along Mopac Southbound Frontage Road. Any improvements at Mopac Frontage Road are subject to TxDOT approval.
- Far West Boulevard & Hart Lane (12). Widen the northbound approach of Hart Lane to a five-lane cross-section at the intersection of Far West Boulevard. The northbound approach should include an exclusive left-turn lane, exclusive thru lane, and exclusive right-turn lane; two southbound receiving lanes with remain. Concurrently with the approach widening, a 5' sidewalk should be reconstructed adjacent to the northbound approach of Hart Lane. Restripe the southbound approach of Hart Lane to include an exclusive left-turn lane, exclusive thru lane, and shared thru-right lane (three 10' approach lanes); a single northbound receiving lane (14') will remain.
- <u>Far West Boulevard & Wood Hollow Drive (13)</u>. Provide a right-turn overlap operation at the
 northbound right-turn movement from Wood Hollow Drive to Far West Boulevard. To maximize
 the benefits of this improvement, restripe the northbound approach to extend the existing rightturn lane.
- <u>Far West Boulevard & Loop 1 SBFR (14)</u>. Provide a FREE, channelized operation at the southbound right-turn movement from Loop 1 SBFR to Far West Boulevard (westbound). The existing lane configurations can accommodate a FREE operation because there are three westbound receiving lanes. The right-turn-only lane along Far West Boulevard is recommended to be restriped as a shared thru-right lane between Loop 1 and the first driveway (approximately 400'). The proposed southbound channelized right-turn movement is intended to accommodate the planned bike lane. However, it remains unclear what further improvements will be necessary to accommodate the bike lane west of the intersection. To the extent possible, an 8' sidewalk will be provided along Mopac Southbound Frontage Road. Any improvements at Mopac Frontage Road are subject to TxDOT approval.

2020 Improvement (1):

 <u>Far West Boulevard & Wood Hollow Drive (1)</u> Adjust signal timing at the intersection of Far West Boulevard and Wood Hollow Drive.

2022 1 Improvement (2):

- Executive Center Drive & Wood Hollow Drive (1). Restripe the eastbound approach of Executive Center Drive at Wood Hollow Drive to include a shared thru-left and a shared thru-right. The shared thru-right lanes will also be marked as shared bike lanes. This will require the east-leg of the intersection to be restriped to provide two receiving lanes. Restripe the westbound approach of Executive Center Drive at Wood Hollow Drive to include an exclusive right-turn lane and a shared thru-left. The proposed cross-sections can be accomplished using existing pavement.
- Far West Boulevard & Wood Hollow Drive (2). Restripe the eastbound approach of Far West
 Boulevard at Wood Hollow Drive. The outside lane of the eastbound approach is currently
 striped as an exclusive right-turn lane and there are three eastbound receiving lanes. To
 prevent weaving downstream of Wood Hollow Drive the City should consider restriping the
 outside lane of Far West Boulevard as a shared thru-right until Loop 1 SBFR.

2024 Improvements (6):

- <u>Executive Center Drive & Hart Lane (1)</u>. Restripe the westbound approach of Executive Center
 Drive at Hart Lane to include two lanes: exclusive left-turn lane and exclusive right-turn lane.
 This improvement will allow the left-turn and right-turn movements to operate independently
 and improve the LOS of this approach.
- Hart Lane between Executive Center Drive and Spicewood Springs Road (2). Restripe Hart
 Lane between Executive Center Drive and Spicewood Springs Road to provide a southbound
 left-turn bay from Hart Lane to Executive Center Drive. The storage provided in this bay will be
 minimum as space must be preserved to accommodate the dual-left-turn lanes at the
 northbound approach from Hart Lane to Spicewood Springs Road.
- <u>Executive Center Drive & Wood Hollow Drive (3)</u>. Consider installing a fully actuated traffic signal at the intersection of Executive Center Drive and Wood Hollow Drive. The City should consider operating northbound and southbound approaches as split phased. Although a signal will ultimately be required, the recommended all-way stop could remain and be monitored until the signal is necessary. An intersection analysis is recommended prior to the installation of the signal.
- <u>Greystone Drive & Hart Lane (4)</u>. Restripe the southbound approach of Hart Lane at Greystone
 Drive to include two thru lanes. This will require the south-leg of the intersection to be restriped
 to provide two receiving lanes. A cross-section which will accommodate three travel lanes and
 two bike lanes can be accomplished using existing pavement. We recommend that this
 improvement not be implement until necessary based on actual (not projected) traffic demands
 require it.
- <u>Greystone Drive & Wood Hollow Drive (5)</u>. Restripe the northbound approach of Wood Hollow Drive at Greystone Drive to include two thru lanes. This will require the north-leg of the intersection to be restriped to provide two receiving lanes. A cross-section which will accommodate three travel lanes and two bike lanes can be accomplished using existing pavement. We recommend that this improvement not be implement until necessary based on actual (not projected) traffic demands require it.
- Far West Boulevard & Wood Hollow Drive. (6) Adjust signal timing at the intersection of Far West Boulevard and Wood Hollow Drive.

I hereby certify that this report complies with the City Code and with applicable technical requirements of the City of Austin and is complete to the best of my knowledge.

KIMLEY-HORN AND ASSOCIATES

Jeff Whitacre, P.E., AICP, PTP

Transportation Engineer